定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)?x∈R,有f(x+2)=f(x)-f(1),且當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),則a的取值范圍是
 
考點(diǎn):抽象函數(shù)及其應(yīng)用,函數(shù)的零點(diǎn)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令x=-1,求出f(1),可得函數(shù)f(x)的周期為2,當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18,畫(huà)出圖形,根據(jù)函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),利用數(shù)形結(jié)合的方法進(jìn)行求解.
解答: 解:∵f(x+2)=f(x)-f(1),
且f(x)是定義域?yàn)镽的偶函數(shù),
令x=-1可得f(-1+2)=f(-1)-f(1),
又f(-1)=f(1),
∴f(1)=0 則有f(x+2)=f(x),
∴f(x)是最小正周期為2的偶函數(shù).
當(dāng)x∈[2,3]時(shí),f(x)=-2x2+12x-18=-2(x-3)2,
函數(shù)的圖象為開(kāi)口向下、頂點(diǎn)為(3,0)的拋物線.
∵函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),
令g(x)=loga(|x|+1),則f(x)的圖象和g(x)的圖象至少有3個(gè)交點(diǎn).
∵f(x)≤0,∴g(x)≤0,可得0<a<1,
要使函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有三個(gè)零點(diǎn),
則有g(shù)(2)>f(2),可得 loga(2+1)>f(2)=-2,
即loga3>-2,∴3<
1
a2
,解得-
3
3
<a<
3
3
,又0<a<1,∴0<a<
3
3

故答案為:(0,
3
3
).
點(diǎn)評(píng):此題主要考查函數(shù)奇偶性、周期性及其應(yīng)用,解題的過(guò)程中用到了數(shù)形結(jié)合的方法,同時(shí)考查解決抽象函數(shù)的常用方法:賦值法,正確賦值是迅速解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切),已知環(huán)湖彎曲路段為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為( 。
A、y=
1
2
x3-
1
2
x2-x
B、y=
1
2
x3+
1
2
x2-3x
C、y=
1
4
x3-x
D、y=
1
4
x3+
1
2
x2-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300名學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).
(Ⅰ)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí)的概率;
(Ⅲ)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4小時(shí),請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
16
+y2=1的左頂點(diǎn)為A,直線x=
8
3
與橢圓交于B、C兩點(diǎn).
(Ⅰ)求△ABC的內(nèi)切圓G的方程;
(Ⅱ)過(guò)點(diǎn)M(0,-1)作圓G的兩條切線交橢圓于E、F兩點(diǎn),試判斷直線EF與圓G的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為e(e為自然對(duì)數(shù)的底數(shù))的正方形中隨機(jī)撒一粒黃豆,則它落到陰影部分的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從字母a,b,c,d,e中任取兩個(gè)不同字母,則取到字母a的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
的夾角為60°,且
a
=(-2,-6),|
b
|=
10
,則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)為奇函數(shù)的是( 。
A、2x-
1
2x
B、x3sinx
C、2cosx+1
D、x2+2x

查看答案和解析>>

同步練習(xí)冊(cè)答案