設(shè)數(shù)列{an}滿足a1=a2=1,a3=2,且對(duì)任意正整數(shù)n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,則a1+a2+…+a100的值為( 。
A、200B、180
C、160D、100
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:數(shù)列{an}滿足a1=a2=1,a3=2,且對(duì)任意正整數(shù)n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,令n=1,可得2a4=4+a4,解得a4=4;同理可得a5=a6=1,a7=2,a8=4.可得數(shù)列{an}是周期為4的數(shù)列,即可得出.
解答: 解:∵數(shù)列{an}滿足a1=a2=1,a3=2,且對(duì)任意正整數(shù)n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,
令n=1,可得2a4=4+a4,解得a4=4,
同理可得a5=a6=1,a7=2,a8=4.
∴數(shù)列{an}是周期為4的數(shù)列,
∴a1+a2+…+a100=25(a1+a2+a3+a4)=25×(1+1+2+4)=200.
故選:A.
點(diǎn)評(píng):本題考查了數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A是拋物線C1:y2=2px(p>0)與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的交點(diǎn)(異于原點(diǎn)),若點(diǎn)A到拋物線C1的準(zhǔn)線的距離為p,則雙曲線C2的離心率為( 。
A、
2
B、
5
C、
3
D、
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一口袋中裝有5個(gè)白球和3個(gè)紅球,這些球除顏色外完全相同.現(xiàn)從袋中往外取球,每次任取一個(gè)記下顏色后放回,直到紅球出現(xiàn)10次時(shí)停止,設(shè)停止時(shí)共取了ξ次球,則P(ξ=12)=
 
.(用式子作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2sin(x+
θ
2
),
3
),
b
=(cos(x+
θ
2
),2cos2(x+
θ
2
)),f(x)=
a
b
-
3

(1)求f(x)的解析式
(2)若0<θ<π,求θ使f(x)為偶函數(shù),并求此時(shí)f(x)=1,x∈[-π,π]的角的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求:sin220°+cos280°+
3
sin20°cos80°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
+
1+x
,若x,y滿足f(x+1)-f(y)>0,則x2+y2-2x+1的取值范圍(  )
A、(1,10)
B、[2,10]
C、(
2
,
10
D、[
2
,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程ln(2x+1)=
1
3x+2
的一個(gè)根落在區(qū)間( 。▍⒖紨(shù)值:ln1.5≈0.41,ln2≈0.69,ln2.5≈0.92)
A、(-
1
4
,0)
B、(0,
1
4
C、(
1
4
,
1
2
D、(
1
2
,
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=x+
1
x
,x1=
1
e
,x2=b(b>1),求f(x1)與f(b)的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=sinx+2xf′(
π
3
),f′(x)為f(x)的導(dǎo)函數(shù),令a=-
1
2
,b=log32,則下列關(guān)系正確的是(  )
A、f(a)+f(b)<0
B、f(-a)+f(b)>0
C、f(a)+f(-b)<0
D、f(-a)+f(-b)<0

查看答案和解析>>

同步練習(xí)冊(cè)答案