【題目】寫出下列命題的否定,并判斷其真假:

(1)p:不論m取何實數(shù),方程x2xm0必有實數(shù)根;

(2)q:存在一個實數(shù)x,使得x2x10;

(3)r:等圓的面積相等,周長相等.

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】試題分析:(1)先判斷命題為全稱命題,那么否定為特稱命題,由判別式判斷跟的個數(shù)即可知命題真假;

(2)先判斷知函數(shù)為特稱命題,那么否定為全稱命題,利用配方可知命題真假;

(3)先判斷命題為全稱命題,那么否定為特稱命題,由圓的面積和周長公式可得真假.

試題解析:

(1)這一命題可以表述為p:“對所有的實數(shù)m,方程x2xm=0有實數(shù)根”,

其否定形式是p:“存在實數(shù)m,使得x2xm=0沒有實數(shù)根”.

當(dāng)Δ=1+4m<0,即m<-時,一元二次方程沒有實數(shù)根,所以p是真命題.

(2)這一命題的否定形式是q:對所有實數(shù)x,都有x2x+1>0.

利用配方法可以驗證q是一個真命題.

(3)這一命題的否定形式是r:存在一對等圓,其面積不相等或周長不相等,由平面幾何知識知r是一個假命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), . 

(Ⅰ)當(dāng)時,求函數(shù)的極值;

(Ⅱ)當(dāng)時,討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實數(shù),對任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.

(1)αβ,則sin αsin β

(2)若對角線相等,則梯形為等腰梯形;

(3)已知ab,c,d都是實數(shù),若abcd,則acbd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:

I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;

II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1、2、3、4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.
(1)求取出的兩個球上標(biāo)號為相同數(shù)字的概率;
(2)求取出的兩個球上標(biāo)號之積能被3整除的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.

(1)求橢圓的方程;

(2)若直線與直線交于點,線段的中點為,證明:點關(guān)于直線的對稱點在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于維向量,若對任意均有,則稱向量. 對于兩個向量定義.

(1)若, 求的值;

(2)現(xiàn)有一個向量序列: 且滿足: ,求證:該序列中不存在向量.

(3) 現(xiàn)有一個向量序列: 且滿足: ,若存在正整數(shù)使得向量序列中的項,求出所有的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1= ,a1=1,n∈N*
(1)求a2 , a3 , a4的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項am , an , 使得 =4a1 , 則 + 的最小值為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案