設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“緊密函數(shù)”.若f(x)=x2-3x+2與g(x)=mx-1在[1,2]上是“緊密函數(shù)”,則m的取值范圍是( 。
分析:根據(jù)“緊密函數(shù)”的定義列出絕對值不等式|x2-3x+2-(mx-1)|≤1,可得x+
2
x
-3≤m≤x+
4
x
-3
在x∈[1,2]上成立,令F(x)=x+
2
x
-3
,G(x)=x+
4
x
-3
,x∈[1,2],從而轉(zhuǎn)化為F(x)max≤m≤g(x)min,可求
解答:解:因為f(x)與g(x)在[a,b]上是“緊密函數(shù)”,
則|f(x)-g(x)|≤1即|x2-3x+2-(mx-1)|≤1在[1,2]上成立
即|x2-(3+m)x+3|≤1在[1,2]上成立
化簡得-1≤x2-(3+m)x+3≤1在[1,2]上成立
x2+2
x
≤m+3≤
x2+4
x

x+
2
x
-3≤m≤x+
4
x
-3
在x∈[1,2]上成立
令F(x)=x+
2
x
-3
,G(x)=x+
4
x
-3
,x∈[1,2],
則F(x)=x+
2
x
-3
在[1,
2
]上單調(diào)遞減,[
2
,2
]上單調(diào)遞增,F(xiàn)(x)max=0
G(x)=x+
4
x
-3
在[1,2]上單調(diào)遞減,G(x)min=G(2)=1
∴0≤m≤1
故選A
點評:本題考查學生會根據(jù)題中新定義的概念列出不等式,要求學生會解絕對值不等式,由不等式進行轉(zhuǎn)化為求解函數(shù)在閉區(qū)間上的最值,解答本題的關(guān)鍵是函數(shù)單調(diào)性的應(yīng)用
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“親密函數(shù)”,區(qū)間[a,b]稱為“親密區(qū)間”.若f(x)=x2-3x+4與g(x)=2x-1在[a,b]上是“親密函數(shù)”,則b-a的最大值是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省四校度高二下學期期末聯(lián)考理科數(shù)學試卷(解析版) 題型:選擇題

設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個函數(shù),若對任意x∈[a,b],

都有|f(x)-g(x)|≤1成立,則稱f(x)和g(x)在[a,b]上是“緊密函數(shù)”.若

與g(x)=mx-1在[1,2]上是“緊密函數(shù)”,則m的取值范圍是(  。

A.[0,1]        B.[2,3]         C.[1,2]          D.[1,3]

 

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案