某電視合為提升收視率,推出大型明星跳水競技節(jié)目《星跳水立方》.由4位奧運(yùn)跳水冠軍薩烏丁、熊倪、高敏、胡佳任教練,分別帶領(lǐng)一個(gè)隊(duì)進(jìn)行競賽,參加競賽的隊(duì)伍按照抽簽方式?jīng)Q定出場順序.
(I)求競賽中薩烏丁隊(duì)、熊倪隊(duì)兩支隊(duì)伍恰好排在前兩位的概率;
(Ⅱ)若競賽中薩烏丁隊(duì)、熊倪隊(duì)之間間隔的隊(duì)伍數(shù)記為X,求X的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,等可能事件的概率
專題:概率與統(tǒng)計(jì)
分析:(I)設(shè)“薩烏丁隊(duì)、熊倪隊(duì)兩支隊(duì)伍恰好排在前兩位”為事件A,由題意可得P(A)=
A
2
2
A
2
2
A
4
4
=
1
6
;(Ⅱ)X的可能取值為0,1,2,同理可得可得P(X=0),P(X=1),P(X=2),列表可得隨機(jī)變量X的分布列,進(jìn)而可得期望.
解答: 解:(I)設(shè)“薩烏丁隊(duì)、熊倪隊(duì)兩支隊(duì)伍恰好排在前兩位”為事件A,
則P(A)=
A
2
2
A
2
2
A
4
4
=
1
6
,所以薩烏丁隊(duì)、熊倪隊(duì)兩支隊(duì)伍恰好排在前兩位的概率為
1
6
;
(Ⅱ)由題意可知隨即變量X的可能取值為0,1,2,
可得P(X=0)=
A
2
2
A
3
3
A
4
4
=
1
2
,P(X=1)=
C
1
2
A
2
2
A
2
2
A
4
4
=
1
3
,P(X=2)=
A
2
2
A
2
2
A
4
4
=
1
6

所以隨機(jī)變量X的分布列為:
 X  0  1  2
 P  
1
2
 
1
3
 
1
6
所以所求的數(shù)學(xué)期望為:EX=0×
1
2
+1×
1
3
+
1
6
=
2
3
點(diǎn)評:本題考查離散型隨機(jī)變量的期望與方差,涉及等可能事件的概率,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,GH是一條東西方向的公路,現(xiàn)準(zhǔn)備在點(diǎn)B的正北方向的點(diǎn)A處建一倉庫,設(shè)AB=y千米,并在公路旁邊建造邊長為x千米的正方形無頂中轉(zhuǎn)站CDEF(其中邊EF在公路GH上),現(xiàn)向公路和中轉(zhuǎn)站分別修兩條簡易公路AB,AC,已知AB=AC+1,且∠ABC=60°.
(1)求y關(guān)于x的函數(shù)解析式;
(2)如果中轉(zhuǎn)站四周圍墻造價(jià)為l0萬元/千米,公路造價(jià)為30萬元/千米,問x取何值時(shí),建中轉(zhuǎn)站和道路總造價(jià)M最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

《選修4-4:坐標(biāo)系與參數(shù)方程》
在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),已知過點(diǎn)P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
(t為參數(shù)),直線 與曲線C分別交于M,N.
(1)寫出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先閱讀下面的文字:“求
2+
2+
2+…
的值時(shí),采用了如下的方式:令
2+
2+
2+…
=x
,則有x=
2+x
,兩邊平方,可解得x的值(負(fù)值舍去)”.那么,可用類比的方法,求出4+
1
4+
1
4+…
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知一個(gè)空間幾何體的三視圖(如圖),則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,若a2=b2+bc,sinC=2sinB,則tanA的值為(  )
A、
3
B、
3
3
C、
3
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足:
x≥1
y≤2
x-y≤0
則(x-3)2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)在12個(gè)同類型的零件中有2個(gè)次品,抽取3次進(jìn)行檢驗(yàn),每次抽取一個(gè),并且取出不再放回,若以ξ表示取出次品的個(gè)數(shù),則ξ的期望值E(ξ)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第三象限角,且
1-sinα
1+sinα
+
1
cosα
=2,則
sinα-cosα
sinα+2cosα
的值為
 

查看答案和解析>>

同步練習(xí)冊答案