【題目】已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為,直線(xiàn)l的方程為:

)求橢圓的方程;

)已知直線(xiàn)l與橢圓相交于兩點(diǎn)

若線(xiàn)段中點(diǎn)的橫坐標(biāo)為,求斜率的值;

已知點(diǎn),求證:為定值

【答案】;()(1,(2)定值為

【解析】

試題(1)橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形,可以看作是以長(zhǎng)為底邊,高為的等腰三角形,故面積為,從而可以列出等式,又由離心率得,可解出,從而求出橢圓的方程 2)直線(xiàn)和橢圓相交,其方程聯(lián)立方程組,消去,可得關(guān)于的二次方程,利用韋達(dá)定理可得,這就是相交弦的中點(diǎn)的橫坐標(biāo),從而求出,把用坐標(biāo)表示出來(lái),借助(1)中的二次方程得出的代入,就可證明出定值

試題解析:()因?yàn)?/span>滿(mǎn)足,, 2

,解得,

則橢圓方程為.

)(1)設(shè),將代入并化簡(jiǎn)得

是上述方程的解

,

因?yàn)?/span>的中點(diǎn)的橫坐標(biāo)為,所以,解得.

2)由(1,

,為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿(mǎn)足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓右焦點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方體中,,E,F,P,Q分別為棱的中點(diǎn),則下列結(jié)論正確的是(

A.B.平面EFPQ

C.平面EFPQD.直線(xiàn)所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著計(jì)算機(jī)的出現(xiàn),圖標(biāo)被賦予了新的含義,又有了新的用武之地.在計(jì)算機(jī)應(yīng)用領(lǐng)域,圖標(biāo)成了具有明確指代含義的計(jì)算機(jī)圖形.如圖所示的圖標(biāo)是一種被稱(chēng)之為“黑白太陽(yáng)”的圖標(biāo),該圖標(biāo)共分為3部分.第一部分為外部的八個(gè)全等的矩形,每一個(gè)矩形的長(zhǎng)為3、寬為1;第二部分為圓環(huán)部分,大圓半徑為3,小圓半徑為2;第三部分為圓環(huán)內(nèi)部的白色區(qū)域.在整個(gè)“黑白太陽(yáng)”圖標(biāo)中隨機(jī)取一點(diǎn),則此點(diǎn)取自圖標(biāo)第三部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等軸雙曲線(xiàn)的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),過(guò)作一條漸近線(xiàn)的垂線(xiàn)且垂足為,.

1)求等軸雙曲線(xiàn)的方程;

2)若過(guò)點(diǎn)且方向向量為的直線(xiàn)交雙曲線(xiàn)、兩點(diǎn),求的值;

3)假設(shè)過(guò)點(diǎn)的動(dòng)直線(xiàn)與雙曲線(xiàn)交于、兩點(diǎn),試問(wèn):在軸上是否存在定點(diǎn),使得為常數(shù),若存在,求出的坐標(biāo),若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì)于任意的,當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬(wàn)元,且每年的能源消耗費(fèi)用(萬(wàn)元)與隔熱層厚度(毫米)滿(mǎn)足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

(1)請(qǐng)解釋的實(shí)際意義,并求的表達(dá)式;

(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢(qián)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子商務(wù)平臺(tái)的管理員隨機(jī)抽取了1000位上網(wǎng)購(gòu)物者,并對(duì)其年齡(在10歲到69歲之間)進(jìn)行了調(diào)查,統(tǒng)計(jì)情況如下表所示.

年齡

人數(shù)

100

150

200

50

已知,,三個(gè)年齡段的上網(wǎng)購(gòu)物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.

(1)求的值;

(2)若將年齡在內(nèi)的上網(wǎng)購(gòu)物者定義為“消費(fèi)主力軍”,其他年齡段內(nèi)的上網(wǎng)購(gòu)物者定義為“消費(fèi)潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購(gòu)物者中抽取5人,再?gòu)倪@5人中抽取2人,求這2人中至少有一人是消費(fèi)潛力軍的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:()的短軸長(zhǎng)為2,離心率為

(1)求橢圓C的方程

(2)若過(guò)點(diǎn)M(2,0)的引斜率為的直線(xiàn)與橢圓C相交于兩點(diǎn)GH,設(shè)P為橢圓C上一點(diǎn),且滿(mǎn)足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?

查看答案和解析>>

同步練習(xí)冊(cè)答案