兩等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若
Sn
Tn
=
2n+3
3n+1
,則
a7
b7
=( 。
A.
33
46
B.
17
22
C.
29
40
D.
31
43
由等差數(shù)列的性質(zhì)可得
a7
b7
=
2a7
2b7
=
a1+a13
b1+b13
=
13(a1+a13)
2
13(b1+b13)
2
=
S13
T13
=
2×13+3
3×13+1
=
29
40

故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

五位同學(xué)圍成一圈依序循環(huán)報(bào)數(shù),規(guī)定:
①第一位同學(xué)首次報(bào)出的數(shù)為1.第二位同學(xué)首次報(bào)出的數(shù)也為1,之后每位同學(xué)所報(bào)出的數(shù)都是前兩位同學(xué)所報(bào)出的數(shù)之和;
②若報(bào)出的是為3的倍數(shù),則報(bào)該數(shù)的同學(xué)需拍手一次,
當(dāng)?shù)?0個(gè)數(shù)被報(bào)出時(shí),五位同學(xué)拍手的總次數(shù)為           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的公差,且,則數(shù)列的前n項(xiàng)和取最大值時(shí)(  )
A.6B.5 C.5或6D.6或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列{an}中,a1=25,S17=S9,問(wèn)數(shù)列前多少項(xiàng)之和最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正項(xiàng)等差數(shù)列{an}的前20項(xiàng)的和為100,那么a7a14的最大值為(  )
A.75B.100C.50D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有n個(gè)首項(xiàng)都是1的等差數(shù)列,設(shè)第m個(gè)數(shù)列的第k項(xiàng)為amk(m,k=1,2,3,…,n,n≥3),公差為dm,并且a1n,a2n,a3n,…,ann成等差數(shù)列.
(Ⅰ)證明dm=p1d1+p2d2(3≤m≤n,p1,p2是m的多項(xiàng)式),并求p1+p2的值;
(Ⅱ)當(dāng)d1=1,d2=3時(shí),將數(shù)列dm分組如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9),…(每組數(shù)的個(gè)數(shù)構(gòu)成等差數(shù)列).設(shè)前m組中所有數(shù)之和為(cm4(cm>0),求數(shù)列{2cmdm}的前n項(xiàng)和Sn
(Ⅲ)設(shè)N是不超過(guò)20的正整數(shù),當(dāng)n>N時(shí),對(duì)于(Ⅱ)中的Sn,求使得不等式
1
50
(Sn-6)>dn
成立的所有N的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,a5=0,則S9=( 。
A.0B.1C.-1D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是等差數(shù)列,若,則數(shù)列前8項(xiàng)的和為(     )
A.128B.80C.64D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在數(shù)列中,,前n項(xiàng)和,其中ab、c為常數(shù),則(A)
A.                                 B.                                 C.                                 D.

查看答案和解析>>

同步練習(xí)冊(cè)答案