【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是( )
A.2+
B.4+
C.2+2
D.5
科目:高中數學 來源: 題型:
【題目】為了解市民在購買食物時看營養(yǎng)說明與性別的關系,現在社會上隨機詢問了100名市民,得到如下2×2列聯表:
(1)是否有95%的把握認為:“性別與讀營養(yǎng)說明有關系”,并說明理由;
(2)把頻率當概率,若從社會上的男性市民中隨機抽取3位,記這3位中讀營養(yǎng)說明的人數為ξ,求隨機變量ξ的分布列和數學期望E(ξ).
男性 | 女性 | 總計 | |
讀營養(yǎng)說明 | 40 | 20 | 60 |
不讀營養(yǎng)說明 | 20 | 20 | 40 |
總計 | 60 | 40 | 100 |
參考公式和數據:
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓C的中心為原點O,F(﹣2 ,0)為C的左焦點,P為C上一點,滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為( )
A. =1
B. =1
C. =1
D. =1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·江蘇)已知集合X={1,2,3},Yn={1,2,3...,n}(nN*),Sn={(a,b)|a整除b或b整除a, aX, bYn}, 令f(n)表示集合Sn所包含元素的個數。
(1)寫出f(6)的值;
(2)當n≥6時,寫出f(n)的表達式,并用數學歸納法證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,點B1在底面內的射影恰好是BC的中點,且BC=CA=2.
(1)求證:平面ACC1A1⊥平面B1C1CB;
(2)若二面角B﹣AB1﹣C1的余弦值為 ,求斜三棱柱ABC﹣A1B1C1的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,AB=AC=PB=PC=10,PA=8,BC=12,點M在平面PBC內,且AM=7,設異面直線AM與BC所成角為α,則cosα的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點為 , 是橢圓上一點,若 , .
(1)求橢圓的方程;
(2)直線l過右焦點 (不與x軸重合)且與橢圓相交于不同的兩點A,B,在x軸上是否存在一個定點P(x0 , 0),使得 的值為定值?若存在,寫出P點的坐標(不必求出定值);若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的離心率為 ,F1 , F2分別為橢圓的左右焦點,P為橢圓上任意一點,△PF1F2的周長為 ,直線l:y=kx+m(k≠0)與橢圓C相交于A,B兩點. (Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l與圓x2+y2=1相切,過橢圓C的右焦點F2作垂直于x軸的直線,與橢圓相交于M,N兩點,與線段AB相交于一點(與A,B不重合).求四邊形MANB面積的最大值及取得最大值時直線l的方程;
(Ⅲ)若|AB|=2,試判斷直線l與圓x2+y2=1的位置關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com