已知△ABC不是直角三角形。
(1)證明:tanA+tanB+tanC=tanAtanBtanC;
(2)若,且sin2A,sin2B,sin2C的倒數(shù)成等差數(shù)列,求的值。
解:(1)A+B+C=π,A+B=π-C,兩邊取正切,tan (A+B)=tan(π-C)
。
(2)依題意,

由(1)知




代入得

3cos(A-C) =1+2cos(2A-2C)=4cos2(A-C)-1
4cos2(A-C)-3cos(A-C)-1=0,
于是cos(A-C)=1(此時△ABC為等邊三角形)或

由于
。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知△ABC頂點A(-1,0)和C(1,0),頂點B在橢圓
x2
4
+
y2
3
=1
上,則
sinA+sinC
sinB
的值是(  )
A、0B、1C、2D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個內(nèi)角A、B、C所對邊分別為a、b、c,則“c=acosB”是“△ABC為直角三角形”的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結(jié)論:
①已知命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題;
②函數(shù)y=
|x|
x2+1
的最小值為
1
2
且它的圖象關(guān)于y軸對稱;
③“a>b”是“2a>2b”的充分不必要條件;
④在△ABC中,若sinAcosB=sinC,則△ABC中是直角三角形.
⑤若tanθ=2,則sin2θ=
4
5
;
其中正確命題的序號為
①④⑤
①④⑤
.(把你認為正確的命題序號填在橫線處)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

同步練習冊答案