已知A、B、C是橢圓M:上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,0),BC過橢圓M的中心,且。
(1)求橢圓M的方程;
(2)過點(diǎn)(0,t)的直線(斜率存在時(shí))與橢圓M交于兩點(diǎn)P、Q,設(shè)D為橢圓M與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍。
解:(1)∵點(diǎn)A的坐標(biāo)為(,0),
,橢圓方程為,      ①
又∵,且BC過橢圓M的中心 O(0,0),

又∵,
∴△AOC是以∠C為直角的等腰三角形,
易得C點(diǎn)坐標(biāo)為(,),
將(,)代入①式得,
∴橢圓M的方程為。
(2)當(dāng)直線的斜率k=0,直線的方程為y=t,則滿足題意的t的取值范圍為-2<t<2,
當(dāng)直線的斜率k≠0時(shí),設(shè)直線的方程為y=kx+t,
,得,
∵直線與橢圓M交于兩點(diǎn)P、Q,
∴△=,
,                                       ②
設(shè)P(x1,y1),Q(x2,y2),PQ的中點(diǎn),
則H的橫坐標(biāo), 縱坐標(biāo),
D點(diǎn)的坐標(biāo)為(0,-2),
,得DH⊥PQ,
,即,     ③
,∴t>1,                                     ④
由②③得0<t<4,結(jié)合④得到1<t<4,
綜上所述,t的取值范圍是(-2,4)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0)
,BC過橢圓M的中心,且
AC
BC
=0,|
BC
|=2|
AC
|

(1)求橢圓M的方程;
(2)過點(diǎn)(0,t)的直線l(斜率存在時(shí))與橢圓M交于兩點(diǎn)P、Q,設(shè)D為橢圓M與y軸負(fù)半軸的交點(diǎn),且|
DP
|=|
DQ
|
,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC
過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點(diǎn)P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是橢圓m:
x2
a2
+
y2
b2
=1(a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC過橢圓m的中心,且
AC
BC
=0
,且|
BC
|=2|
AC
|.
(1)求橢圓m的方程;
(2)過點(diǎn)M(0,t)的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且|
DP
|=|
DQ
|.求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知A、B、C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)上的三點(diǎn),,BC過橢圓的中心O,且AC⊥BC,|BC|=2|AC|.則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)已知A,B,C是橢圓W:
x24
+y2=1
上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(Ⅰ)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(Ⅱ)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案