【題目】袋子里有完全相同的3只紅球和4只黑球,今從袋子里隨機(jī)取球.

)若有放回地取3次,每次取一個(gè)球,求取出2個(gè)紅球1個(gè)黑球的概率;

)若無放回地取3次,每次取一個(gè)球,若取出每只紅球得2分,取出每只黑球得1分,求得分的分布列和數(shù)學(xué)期望.

【答案】1108:343

2


3

4

5

6






【解析】試題分析:(1)由題可先算出取出紅球和黑球的概率,再求取32個(gè)紅球1個(gè)黑球的概率,可知為獨(dú)立重復(fù)試驗(yàn)(有放回),運(yùn)用獨(dú)立重復(fù)試驗(yàn)的概率公式可求;(注意規(guī)范解題格式)

2)由題意(無放回),先分析出的可能取值,再分別求出對(duì)應(yīng)的概率,可列出分布列(為超幾何分布),代入期望公式可得。

試題解析:(1)從袋子里有放回地取3次球,相當(dāng)于做了3次獨(dú)立重復(fù)試驗(yàn),每次試驗(yàn)取出紅球的概率為,取出黑球的概率為,設(shè)事件取出2個(gè)紅球1個(gè)黑球,則

2的取值有四個(gè):34、5、6,分布列為:

,,

,


3

4

5

6






從而得分的數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2),有如下結(jié)論:
(1)f(x1+x2)=f(x1)f(x2
(2)f(x1x2)=f(x1)+f(x2
(3)
當(dāng)f(x)=ex時(shí),上述結(jié)論中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P是圓x2+y2=4上一動(dòng)點(diǎn),PD⊥x軸于點(diǎn)D,記滿足 = + )的動(dòng)點(diǎn)M的軌跡為Γ. (Ⅰ)求軌跡Γ的方程;
(Ⅱ)已知直線l:y=kx+m與軌跡F交于不同兩點(diǎn)A,B,點(diǎn)G是線段AB中點(diǎn),射線OG交軌跡Γ于點(diǎn)Q,且 ,λ∈R.
①證明:λ2m2=4k2+1;
②求△AOB的面積S(λ)的解析式,并計(jì)算S(λ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=a(x-lnx)+,a∈R.

(I)討論f(x)的單調(diào)性;

(II)當(dāng)a=1時(shí),證明f(x)>f’(x)+對(duì)于任意的x∈[1,2] 恒成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在原點(diǎn),焦點(diǎn)分別在軸與軸上,它們有相同的離心率,并且的短軸為的長軸,的四個(gè)焦點(diǎn)構(gòu)成的四邊形面積是.

(1)求橢圓的方程;

(2)設(shè)是橢圓上非頂點(diǎn)的動(dòng)點(diǎn),與橢圓長軸兩個(gè)頂點(diǎn),的連線,分別與橢圓交于,點(diǎn).

(i)求證:直線,斜率之積為常數(shù);

(ii)直線與直線的斜率之積是否為常數(shù)?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2+2x在x=﹣1處取得極值,且在點(diǎn)(1,f(1))處的切線的斜率為2. (Ⅰ)求a,b的值:
(Ⅱ)若關(guān)于x的方程f(x)+x3﹣2x2﹣x+m=0在[ ,2]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若直線與曲線恒相切于同一定點(diǎn),求的方程;

2)當(dāng)時(shí), ,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=2x3+3ax2+3bx+8在x=1及x=2時(shí)取得極值.
(1)求a,b的值;
(2)求曲線f(x)在x=0處的切線方程.

查看答案和解析>>

同步練習(xí)冊答案