【題目】已知函數(shù)f(x)=ax﹣lnx;g(x)= .
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當x∈[1,e]時,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當a>1時,對于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.
【答案】
(1)解:∵f(x)=ax﹣lnx,∴x>0, ,
∵x>0,
∴當a≤0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
當a>0時,若x> ,則f′(x)>0,∴f(x)在( ,+∞)上是增函數(shù),
若0<x< ,則f′(x)<0,∴f(x)在(0, )上是減函數(shù).
綜上所述,當a≤0時,f(x)在(0,+∞)上是減函數(shù),
當a>0時,f(x)在( ,+∞)上是增函數(shù),在(0, )上是減函數(shù).
(2)證明:當a=e時,f(x)=ex﹣lnx,
∴ ,∴x∈[1,e]時,f′(x)>0恒成立.
f(x)=ex﹣lnx在[1,e]上是單調(diào)遞增函數(shù),∴f(x)min=f(1)=e,
令H(x)=e﹣g(x)=e﹣ ,則H′(x)= ,x∈[1,e]時,H′(x)≤0,
∴H(x)在[1,e]上單調(diào)遞減,H(x)max=H(1)=e,
∴f(x)≥H(x),即f(x)≥e﹣g(x).
故a=e(e是自然常數(shù)),當x∈[1,e]時,f(x)≥e﹣g(x)恒成立.
(3)解:∵ ,a>1時,由x∈[1,e],得f′(x)>0,
∴f(x)=ax﹣lnx在[1,e]上單調(diào)遞增,
f(x)min=f(1)=a,f(x)max=f(e)=ae﹣1,即f(x)的值域是[a,ae﹣1],
由h(x)=x2+1﹣lnx,得 ,∴x∈[1,e]時,h′(x)>0,
h(x)在[1,e]上單調(diào)遞增,
∴h(x)min=h(1)=2,h(x)max=h(e)=e2,即h(x)的值域是[2,e2],
x1∈[1,e],x0∈[1,e],有f(x1)=h(x0),
∴f(x)的值域是h(x)的值域的子集,
∴ ,∴ .
∴a的取值范圍是[2,e+ ].
【解析】(1)推導出 ,由此利用導數(shù)性質(zhì)能討論函數(shù)f(x)的單調(diào)性.(2)當a=e時,f(x)=ex﹣lnx, ,由此利用構造法和導數(shù)性質(zhì)能證明a=e(e是自然常數(shù)),當x∈[1,e]時,f(x)≥e﹣g(x)恒成立.(3)由 ,a>1時,求出f(x)的值域是[a,ae﹣1],由此利用導數(shù)性質(zhì)能求出a的取值范圍.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導數(shù)的相關知識點,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , , .
(I)求異面直線與所成角的余弦值;
(II)求證: 平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側視圖是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新學年伊始,某中學學生社團開始招新,某高一新生對“海濟公益社”、“理科學社”、“高音低調(diào)樂社”很感興趣,假設她能被這三個社團接受的概率分別為 , , .
(1)求此新生被兩個社團接受的概率;
(2)設此新生最終參加的社團數(shù)為ξ,求ξ的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為確定下一年投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年利潤y(單位:萬元)的影響,對近5年的宣傳費xi和年利潤yi(i=1,2,3,4,5)進行了統(tǒng)計,列出了下表:
x(單位:千元) | 2 | 4 | 7 | 17 | 30 |
y(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
員工小王和小李分別提供了不同的方案.
(1)小王準備用線性回歸模型擬合y與x的關系,請你建立y關于x的線性回歸方程(系數(shù)精確到0.01);
(2)小李決定選擇對數(shù)回歸模擬擬合y與x的關系,得到了回歸方程: =1.450lnx+0.024,并提供了相關指數(shù)R2=0.995,請用相關指數(shù)說明選擇哪個模型更合適,并預測年宣傳費為4萬元的年利潤(精確到0.01)(小王也提供了他的分析數(shù)據(jù) (yi﹣ i)2=1.15) 參考公式:相關指數(shù)R2=1﹣
回歸方程 = x+ 中斜率和截距的最小二乘法估計公式分別為 = , = ﹣ x,參考數(shù)據(jù):ln40=3.688, =538.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=lnx,g(x)=ax+ ,函數(shù)f(x)的圖象與x軸的交點也在函數(shù)g(x)的圖象上,且在此點有公切線. (Ⅰ)求a、b的值;
(Ⅱ)試比較f(x)與g(x)的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是常數(shù).
(1)當時,求函數(shù)的值域;
(2)當時,求方程的解集;
(3)若函數(shù)在區(qū)間上有零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖都是邊長為1的正方體疊成的幾何體,例如第(1)個幾何體的表面積為6個平方單位,第(2)個幾何體的表面積為18個平方單位,第(3)個幾何體的表面積是36個平方單位.依此規(guī)律,則第n個幾何體的表面積是個平方單位.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com