【題目】某淘寶商城在2017年前7個月的銷售額 (單位:萬元)的數(shù)據(jù)如下表,已知與具有較好的線性關(guān)系.
(1)求關(guān)于的線性回歸方程;
(2)分析該淘寶商城2017年前7個月的銷售額的變化情況,并預(yù)測該商城8月份的銷售額.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:
, .
【答案】(1).(2)126萬元.
【解析】試題分析:(1)根據(jù)所給的數(shù)據(jù),利用最小二乘法可得橫標(biāo)和縱標(biāo)的平均數(shù),橫標(biāo)和縱標(biāo)的積的和,與橫標(biāo)的平方和,代入公式求出的值,再求出的值,寫出線性回歸方程.
(2)根據(jù)(1)求出的線性回歸方程,代入所給的的值,預(yù)測預(yù)測該商城8月份的銷售額..
試題解析:(1)由所給數(shù)據(jù)計(jì)算得,
,
,
, .
所求回歸方程為.
(2)由(1)知, ,故前7個月該淘寶商城月銷售量逐月增加,平均每月增加10萬.
將,代入(1)中的回歸方程, .
故預(yù)測該商城8月份的銷售額為126萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校10位同學(xué)組成的志愿者組織分別由李老師和楊老師負(fù)責(zé).每次獻(xiàn)愛心活動均需該組織4位同學(xué)參加.假設(shè)李老師和楊老師分別將各自活動通知的信息獨(dú)立、隨機(jī)地發(fā)給4位同學(xué),且所發(fā)信息都能收到.則甲同學(xué)收到李老師或楊老師所發(fā)活動通知信息的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一張坐標(biāo)紙上涂著圓E: 及點(diǎn)P(1,0),折疊此紙片,使P與圓周上某點(diǎn)P'重合,每次折疊都會留下折痕,設(shè)折痕與直線EP'交于點(diǎn)M .
(1)求 的軌跡 的方程;
(2)直線 與C的兩個不同交點(diǎn)為A , B , 且l與以EP為直徑的圓相切,若 ,求△ABO的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題: ①已知隨機(jī)變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2a﹣b>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( )x的零點(diǎn)個數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點(diǎn)為F1(﹣ ,0),F(xiàn)2( ,0),M是橢圓上一點(diǎn),若 =0,| || |=8.
(1)求橢圓的方程;
(2)點(diǎn)P是橢圓上任意一點(diǎn),A1、A2分別是橢圓的左、右頂點(diǎn),直線PA1 , PA2與直線x= 分別交于E,F(xiàn)兩點(diǎn),試證:以EF為直徑的圓交x軸于定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于的一元二次方程.
(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù), 是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率;
(2)若時從區(qū)間上任取的一個數(shù), 是從區(qū)間上任取的一個數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于實(shí)數(shù)和,定義運(yùn)算“*”:,設(shè),且關(guān)于的方程為恰有三個互不相等的實(shí)數(shù)根,則的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形SABC中,∠B=∠C= ,D為邊SC上的點(diǎn),且AD⊥SC,現(xiàn)將△SAD沿AD折起到達(dá)PAD的位置(折起后點(diǎn)S記為P),并使得PA⊥AB.
(1)求證:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,G是AD的中點(diǎn),當(dāng)線段PB取得最小值時,則在平面PBC上是否存在點(diǎn)F,使得FG⊥平面PBC?若存在,確定點(diǎn)F的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ,以原點(diǎn)為圓心,雙曲線的實(shí)半軸長為半徑的圓與雙曲線的兩條漸近線相交于 四點(diǎn),四邊形 的面積為 ,則雙曲線的離心率為( )
A.
B.2
C.
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com