精英家教網 > 高中數學 > 題目詳情
(本小題滿分13分)
已知點F1,F2為橢圓的兩個焦點,點O為坐標原點,圓O是以F1,F2為直徑的圓,一條直線與圓O相切并與橢圓交于不同的兩點A,B。
(1)設的表達式;
(2)若求直線的方程;
(3)若,求三角形OAB面積的取值范圍。
(1)                        …………4分

則由,消去y得



        …………8分
(2)由(1)知:

由弦長公式得

解得                                   …………13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)
如圖,已知橢圓=1(2≤m≤5),過其左焦點且斜率為1的直線與橢圓及直線的交點從左到右的順序為A、B、C、D,設
(Ⅰ)求的解析式;
(Ⅱ)求的最值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題14分)已知A、B分別是橢圓的左右兩個焦點,O為坐標原點,點P )在橢圓上,線段PBy軸的交點M為線段PB的中點。
(1)求橢圓的標準方程;
(2)點是橢圓上異于長軸端點的任一點,對于△ABC,求的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
設橢圓的離心率,右焦點到直線的距離為坐標原點.
(Ⅰ)求橢圓的方程;
(II)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明:點到直線的距離為定值,并求弦長度的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的左、右焦點分別為,點軸上方橢圓上的一點,且, ,
(Ⅰ) 求橢圓的方程和點的坐標;
(Ⅱ)判斷以為直徑的圓與以橢圓的長軸為直徑的圓的位置關系;
(Ⅲ)若點是橢圓上的任意一點,是橢圓的一個焦點,探究以為直徑的圓與以橢圓的長軸為直徑的圓的位置關系.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓的離心率是,求橢圓兩準線間的距離。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的方程為,則此橢圓的離心率為          
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線兩點,則以A為焦點,經過B點的橢圓的標準方程是              

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓的左右焦點分別為是以點為圓心(為坐標原點),以為半徑的圓與橢圓在第二、三象限的兩個交點,且為等邊三角形,則橢圓的離心率的值是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案