(本小題滿分12分).如圖所示,四棱錐P-ABCD,底面ABCD是邊長為2的正方形,PA⊥面ABCD,PA=2,過點A作AE⊥PB,AF⊥PC,連接EF.

(1)求證:PC⊥面AEF.

(2)若面AEF交側(cè)棱PD于點G(圖中未標(biāo)出點G),求多面體P—AEFG的體積。

 

【答案】

(1)證明:PA⊥面ABCD,BC在面內(nèi),∴ PA⊥BC  BA⊥BC,BC∩BA=B,∴BC⊥面PAB,又∵AE在面PAB內(nèi)∴ BC⊥AEAE⊥PB,BC∩PB=B, ,∴AE⊥面PBC又∵PC在面PBC內(nèi)AE⊥PC, AE⊥PC, AE∩AF=A, ∴PC⊥面AEF. ………5分

(2)PC⊥面AEF, ∴ AG⊥PC, AG⊥DC ∴PC∩DC=C  AG⊥面PDC, ∵GF在面PDC內(nèi)∴AG⊥GF△AGF是直角三角形,由(1)可知△AEF是直角三角形,AE=AG=,EF=GF=, 又AF=,PF=,∴           ………………12分

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

同步練習(xí)冊答案