已知函數(shù)
(1)若函數(shù)時取得極值,求實數(shù)的值;
(2)若對任意恒成立,求實數(shù)的取值范圍.
(1);(2).

試題分析:(1)先求導函數(shù),進而根據(jù)題中條件得出,從可即可求解出的值,注意,根據(jù)函數(shù)在某點取得極值去求參數(shù)的值時,往往必須進行檢驗,也就是將所求得的的值代回原函數(shù),看看是否真的在該點處取得極值,如果不是必須舍去,如果是則保留;(2)先將對任意恒成立等價轉化為恒成立,進而求出導函數(shù)并進行因式分解得到,進而分、兩類分別確定的單調性,隨之確定,然后分別求解不等式,解出的取值范圍,最后取這兩種情況下的的取值范圍的并集即可.
(1),依題意有:,即
解得:
檢驗:當時,
此時:函數(shù)上單調遞減,在上單調遞增,滿足在時取得極值
綜上:                               5分
(2)依題意:對任意恒成立等價轉化為恒成立 6分
因為
得:                      8分
時,函數(shù)恒成立,則單調遞增,于是,解得:,此時:            10分
②當時,函數(shù)單調遞減,在單調遞增,于是,不合題意,此時:
綜上所述:實數(shù)的取值范圍是        12分.
說明:本題采用參數(shù)分離法或者先用必要條件縮小參數(shù)范圍也可以.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù),其中.
(1)當時,求的單調遞增區(qū)間;
(2)若在區(qū)間上的最小值為8,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)的圖象過點P(0,2),且在點M(-1,)處的切線方程。
(1)求函數(shù)的解析式;   
(2)求函數(shù)的圖像有三個交點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求函數(shù)的極小值;
(2)設函數(shù),試問:在定義域內是否存在三個不同的自變量使得的值相等,若存在,請求出的范圍,若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結論:
①f(0)f(1)>0;        ②f(0)f(1)<0;
③f(0)f(3)>0;        ④f(0)f(3)<0.
其中正確結論的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)=(x-3)ex的單調遞增區(qū)間是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)的極值;(2)當時,討論的單調性。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(1)若曲線在點處的切線方程為,求的值;
(2)當時,求的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)內有極小值,則
A.B.C.D.

查看答案和解析>>

同步練習冊答案