設(shè)點(diǎn)A在圓x2+y2=1內(nèi),點(diǎn)B(t,0),O為坐標(biāo)原點(diǎn),若集合⊆{(x,y)|x2+y2≤9},則實(shí)數(shù)t的最大值為   
【答案】分析:利用集合⊆{(x,y)|x2+y2≤9},結(jié)合向量的模長(zhǎng)公式,即可得到結(jié)論.
解答:解:∵集合⊆{(x,y)|x2+y2≤9},
≤9
∵點(diǎn)A在圓x2+y2=1內(nèi),點(diǎn)B(t,0),
∴由向量的運(yùn)算可得1+t2+2tcos∠AOB≤9
∴t2+2t-8≤0
∴-4≤t≤2
∴實(shí)數(shù)t的最大值為2
故答案為:2
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查向量模長(zhǎng)的計(jì)算,考查解不等式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)點(diǎn)P(m,n)在圓x2+y2=2上,l是過(guò)點(diǎn)P的圓的切線,切線l與函數(shù)y=x2+x+k(k∈R)的圖象交于A,B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn).
(1)當(dāng)k=-2,m=-1,n=-1時(shí),判斷△OAB的形狀;
(2)△OAB是以AB為底的等腰三角形;
①試求出P點(diǎn)縱坐標(biāo)n滿足的等量關(guān)系;
②若將①中的等量關(guān)系右邊化為零,左邊關(guān)于n的代數(shù)式可表為(n+1)2(ax2+bx+c)的形式,且滿足條件的等腰三角形有3個(gè),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓x2+y2=4內(nèi)一定點(diǎn)M(0,1),經(jīng)M且斜率存在的直線交圓于A(x1,y1)、B(x2,y2)兩點(diǎn),過(guò)點(diǎn)A、B分別作圓的切線l1,l2.設(shè)切線l1,l2交于點(diǎn)Q.
(1)設(shè)點(diǎn)P(x0,y0)是圓上的點(diǎn),求證:過(guò)P的圓的切線方程是
x
 
0
x+y0y=4

(2)求證Q在一定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州一模)設(shè)點(diǎn)A在圓x2+y2=1內(nèi),點(diǎn)B(t,0),O為坐標(biāo)原點(diǎn),若集合{C|
OC
=
OA
+
OB
}
⊆{(x,y)|x2+y2≤9},則實(shí)數(shù)t的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省揚(yáng)州大學(xué)附中高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

設(shè)點(diǎn)P(m,n)在圓x2+y2=2上,l是過(guò)點(diǎn)P的圓的切線,切線l與函數(shù)y=x2+x+k(k∈R)的圖象交于A,B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn).
(1)當(dāng)k=-2,m=-1,n=-1時(shí),判斷△OAB的形狀;
(2)△OAB是以AB為底的等腰三角形;
①試求出P點(diǎn)縱坐標(biāo)n滿足的等量關(guān)系;
②若將①中的等量關(guān)系右邊化為零,左邊關(guān)于n的代數(shù)式可表為(n+1)2(ax2+bx+c)的形式,且滿足條件的等腰三角形有3個(gè),求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案