【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC= AD=1,CD=
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C為30°,設(shè)PM=tMC,試確定t的值.

【答案】
(1)解:證法一:∵AD∥BC,BC= AD,Q為AD的中點,

∴四邊形BCDQ為平行四邊形,∴CD∥BQ.

∵∠ADC=90°∴∠AQB=90°,即QB⊥AD.

又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,

∴BQ⊥平面PAD.

∵BQ平面PQB,∴平面PQB⊥平面PAD.

證法二:AD∥BC,BC= AD,Q為AD的中點,

∴四邊形BCDQ為平行四邊形,∴CD∥BQ.

∵∠ADC=90°∴∠AQB=90°.

∵PA=PD,∴PQ⊥AD.

∵PQ∩BQ=Q,∴AD⊥平面PBQ.

∵AD平面PAD,∴平面PQB⊥平面PAD


(2)解:∵PA=PD,Q為AD的中點,∴PQ⊥AD.

∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,

∴PQ⊥平面ABCD.

如圖,以Q為原點建立空間直角坐標(biāo)系.

則平面BQC的法向量為 ;

Q(0,0,0), , ,

設(shè)M(x,y,z),則 ,

,

,∴

在平面MBQ中, ,

∴平面MBQ法向量為

∵二面角M﹣BQ﹣C為30°,

,

∴t=3.


【解析】(1)法一:由AD∥BC,BC= AD,Q為AD的中點,知四邊形BCDQ為平行四邊形,故CD∥BQ.由∠ADC=90°,知QB⊥AD.由平面PAD⊥平面ABCD,知BQ⊥平面PAD.由此能夠證明平面PQB⊥平面PAD. 法二:由AD∥BC,BC= AD,Q為AD的中點,知四邊形BCDQ為平行四邊形,故CD∥BQ.由∠ADC=90°,知∠AQB=90°.由PA=PD,知PQ⊥AD,故AD⊥平面PBQ.由此證明平面PQB⊥平面PAD.(2)由PA=PD,Q為AD的中點,知PQ⊥AD.由平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,知PQ⊥平面ABCD.以Q為原點建立空間直角坐標(biāo)系,利用向量法能夠求出t=3.
【考點精析】掌握平面與平面垂直的判定是解答本題的根本,需要知道一個平面過另一個平面的垂線,則這兩個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{an}的前n項和為Sn , 且Tn= ,若對于一切正整數(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入a,b分別為16,20,則輸出的a=(
A.0
B.2
C.4
D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點,M是線段AB的中點,過M作x軸的垂線C于點N.
(1)證明:拋物線C在點N處的切線與AB平行;
(2)是否存在實數(shù)k使以AB為直徑的圓M經(jīng)過點N,若存在,求k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線G:y2=2px(p>0)焦點F的直線l與拋物線G交于M、N兩點(M在x軸上方),滿足 , ,則以M為圓心且與拋物線準(zhǔn)線相切的圓的標(biāo)準(zhǔn)方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|≥m對一切實數(shù)x均成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點為A.

(1)求該橢圓的方程:
(2)過點D( ,﹣ )作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,D為AA1的中點,E為BC的中點.
(1)求證:直線AE∥平面BDC1
(2)若三棱柱 ABC﹣A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1與平面ABC所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x),當(dāng)x∈[0,2]時,f(x)=4(1﹣|x﹣1|),且對于任意實數(shù)x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f( ﹣1).若g(x)=f(x)﹣logax有且只有三個零點,則a的取值范圍是(
A.[2,10]
B.[ , ]
C.(2,10)
D.[2,10)

查看答案和解析>>

同步練習(xí)冊答案