設P是焦點為F1、F2橢圓
x2
a2
+
y2
b2
=1(a
>b>0)上的任意一點,若∠F1PF2的最大值為60°,方程ax2+bx-c=0的兩個實根分別為x1和x2,則過點P(x1,x2)引圓x2+y2=2的切線共有
 
條.
分析:當P在橢圓的短軸頂點時,∠F1PF2的最大值,用c表示出a和b,化簡一元二次方程,求出根,得到點P的坐標,看點P到圓心的距離與半徑的關(guān)系,確定切線數(shù)量.
解答:解:當P在橢圓的短軸頂點時,∠F1PF2的最大值為60°,∴a=2c,b=
3
c,
方程ax2+bx-c=0 即 2cx2+
3
cx-c=0,即 2x2+
3
x-1=0,此方程的2個根是
-
3
-11
4
、
-
3
+11
4
,
點P(
-
3
-11
4
-
3
+11
4
)到圓心的距離為
248
16
=
62
2
>半徑
2

點P在圓外,則切線由2條;
故答案為2.
點評:本題考查橢圓的性質(zhì)及圓的切線方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•甘肅一模)設橢圓M:
x2
a2
+
y2
2
=1
(a>
2
)
的右焦點為F1,直線l:x=
a2
a2-2
與x軸交于點A,若
OF1
+2
AF1
=0
(其中O為坐標原點).
(1)求橢圓M的方程;
(2)設P是橢圓M上的任意一點,EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•惠州模擬)(理科)設橢圓M:
x2
a2
+
y2
2
=1(a>
2
)
的右焦點為F1,直線l:x=
a2
a2-2
與x軸交于點A,若
OF1
+2
AF1
=0
(其中O為坐標原點)
(1)求橢圓M的方程;
(2)設點P是橢圓M上的任意一點,線段EF為圓N:x2+(y-2)2=1的任意一條直徑(E、F為直徑的兩個端點),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青島一模)已知點M在橢圓D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點,若圓M與y軸相交于A,B兩點,且△ABM是邊長為
2
6
3
的正三角形.
(Ⅰ)求橢圓D的方程;
(Ⅱ)設P是橢圓D上的一點,過點P的直線l交x軸于點F(-1,0),交y軸于點Q,若
QP
=2
PF
,求直線l的斜率;
(Ⅲ)過點G(0,-2)作直線GK與橢圓N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K兩點,又過橢圓N的右焦點F1做平行于HK的直線交橢圓N于R,S兩點,試判斷滿足|GH|•|GK|=3|RF1|•|F1S|的直線GK是否存在?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(1,1)為中點的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過點(
.
x
.
y
)
;
(4)如圖,在四面體ABCD中,設E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD
;
(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點為F1,F(xiàn)2,P為右支是異于右頂點的任一點,△PF1F2的內(nèi)切圓圓心為T,則點T的橫坐標為a.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖北省黃岡市高三上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.

(1)求橢圓C1的方程;

(ll)設橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

 

查看答案和解析>>

同步練習冊答案