已知y+5與3x+4成正比例,當(dāng)x=1時(shí),y=2。
(1)求y與x的函數(shù)關(guān)系式;
(2)求當(dāng)x=-1時(shí)的函數(shù)值;
(3)如果y的取值范圍是[0,5],求相應(yīng)的x的取值范圍.
解:(1)設(shè)y+5=k(3x+4),
∵x=1時(shí),y=2,
∴2+5=k(3+4),∴k=1,
∴所求函數(shù)關(guān)系式為y=3x-1;
(2)當(dāng)x=-1時(shí),y=3×(-1)-1=-4;
(3)令0≤3x-1≤5得,≤x≤2,
∴所求x的取值范圍是[,2].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)請(qǐng)考生在A、B、C三題中任選一題作答,如果多做,則按所做的第一題記分.作答時(shí)請(qǐng)寫清題號(hào).
A.選修4-1(幾何證明選講)已知AD為圓O的直徑,直線BA與圓O相切與點(diǎn)A,直線OB與弦AC垂直并相交于點(diǎn)G,與弧AC相交于M,連接DC,AB=10,AC=12.
(Ⅰ)求證:BA•DC=GC•AD;(Ⅱ)求BM.
B.選修4-4(坐標(biāo)系與參數(shù)方程)求直線
x=1+4t
y=-1-3t
(t為參數(shù))被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長(zhǎng).
C.選修4-5(不等式選講)(Ⅰ)求函數(shù)y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福州模擬)本題有(1)、(2)、(3)三個(gè)選做題,每題7分,請(qǐng)考生任選2題作答,滿分l4分.如果多做,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填人括號(hào)中.
(1)選修4-2:矩陣與變換
利用矩陣解二元一次方程組
3x+y=2
4x+2y=3

(2)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=1.圓的參數(shù)方程為
x=1+rcosq
y=1+rsinq
(θ為參數(shù),r>0),若直線l與圓C相切,求r的值.
(3)選修4-5:不等式選講
已知a2+b2+c2=1(a,b,c∈R),求a+b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:008

判斷正誤: 

圓心在點(diǎn)(2,1)且與已知圓x2+y2-3x=0的公共弦所在直線過點(diǎn)(5,-2)的圓的方程為(x-2)2+(y-1)2=4

(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆安徽合肥一六八中學(xué)高二上學(xué)期期中考試?yán)頂?shù)學(xué)卷(解析版) 題型:解答題

已知直線l:3x-y+3=0,求:

(1)過點(diǎn)P(4,5)且與直線l垂直的直線方程;

(2)與直線平行且距離等于的直線方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案