已知函數(shù)
y=
f(
x)(
x∈R)的圖象如圖所示,則不等式
xf′(
x)<0的解集為________.
∪
xf′(
x)<0⇒
或
當
x∈
時,
f(
x)單調(diào)遞減,此時
f′(
x)<0.
當
x∈(-∞,0)時,
f(
x)單調(diào)遞增,此時
f′(
x)>0.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知:函數(shù)
.
(1)函數(shù)
的圖像在點
處的切線的傾斜角為
,求
的值;
(2)若存在
使
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
(1)若
是
的極值點,求
及
在
上的最大值;
(2)若函數(shù)
是
上的單調(diào)遞增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(
為自然對數(shù)的底數(shù)).
(Ⅰ)求曲線
在點
處的切線方程;
(Ⅱ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若存在
使不等式
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知a∈R,函數(shù)f(x)=
+ln x-1.
(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)求f(x)在區(qū)間(0,e]上的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
f(
x)=
x3+
x2-
ax-
a,
x∈R,其中
a>0.
(1)求函數(shù)
f(
x)的單調(diào)區(qū)間;
(2)若函數(shù)
f(
x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求
a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
f(
x)的定義域是R,
f(0)=2,對任意
x∈R,
f(
x)+
f′(
x)>1,則不等式e
x·
f(
x)>e
x+1的解集為( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知向量m=(ex,ln x+k),n=(1,f(x)],m∥n(k為常數(shù)),曲線y=f(x)在點(1,f(1))處的切線與y軸垂直,F(x)=xexf′(x).
(1)求k的值及F(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)=-x2+2ax(a為正實數(shù)),若對于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
的導函數(shù)為
,且滿足關系式
,則
的值等于( )
查看答案和解析>>