求過點(diǎn)P(3,6)與圓(x+2)2+(y-2)2=25相切的直線方程.

答案:
解析:

  解:∵圓心為(-2,2) ∴|OP|=5則P在圓上,且切線的斜率存在.

  設(shè)切線方程為

  由


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:x2+y2+D1x+8y-8=0,圓C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圓C1與圓C2的公共弦所在的直線l1的方程;
(2)在(1)的條件下,已知P(-3,m)是直線l1上一點(diǎn),過點(diǎn)P分別作直線與圓C1、圓C2相切,切點(diǎn)為A、B,求證:|PA|=|PB|;
(3)將圓C1、圓C2的方程相減得一直線l2:(D1-D2)x+12y-6=0.Q是直線l2上,且在圓C1、圓C2外部的任意一點(diǎn).過點(diǎn)Q分別作直線QM、QN與圓C1、圓C2相切,切點(diǎn)為M、N,試探究|QM|與|QN|的關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=ax3+bx2+cx+d滿足:①函數(shù)f(x)的圖象過點(diǎn)P(3,-6);②函數(shù)f(x)在x1、x2處取得極值,且|x1-x2|=4;③函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱.
(1)求f(x)的表達(dá)式;
(2)若α,β∈R,求證:|f(2cosα)-f(2sinβ)|≤
643
;
(3)求過點(diǎn)P(3,-6)與函數(shù)f(x)的圖象相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:泰州市2006~2007學(xué)年度第一學(xué)期期末聯(lián)考高3數(shù)學(xué)試題 題型:044

設(shè)定義在R上的函數(shù)f(x)=ax3+bx2+cx+d滿足:①函數(shù)f(x)的圖象過點(diǎn)P(3,-6);②函數(shù)f(x)在x1、x2處取得極值,且|x1-x2|=4;③函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)對稱.

(1)求f(x)的表達(dá)式;

(2)若α,β∈R,求證:;

(3)求過點(diǎn)P(3,-6)與函數(shù)f(x)的圖象相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年吉林省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:解答題

設(shè)定義在R上的函數(shù)f(x)=ax3+bx2+cx+d滿足:①函數(shù)f(x)的圖像過點(diǎn)P(3,-6);②函數(shù)f(x)在x1,x2處取極值,且|x1-x2|=4;③函數(shù)y=f(x-1)的圖像關(guān)于點(diǎn)(1,0)對稱。(1)求f(x)的表達(dá)式;(2)若α,β∈R,求證;(3)求過點(diǎn)P(3,-6)與函數(shù)f(x)的圖像相切的直線方程。(12分)         

 

查看答案和解析>>

同步練習(xí)冊答案