求圓心在直線上,與軸相切,且被直線截得的弦長為的圓的方程.

解析試題分析:設(shè)圓心,由題意可得半徑,求出圓心到直線的距離d,再利用垂徑定理,解得的值,從而得到圓心坐標(biāo)和半徑,由此求出圓的方程.
試題解析:解:設(shè)所求圓的圓心為,半徑為,依題意得:,   (2分)
圓心到直線的距離,        (4分)
由“,,半弦長”構(gòu)成直角三角形,得,       (6分)
解得:,      (7分)
當(dāng)時(shí),圓心為,半徑為,所求圓的方程為
當(dāng)時(shí),圓心為,半徑為
所求圓的方程為;                         (11分)
綜上所述,所求圓的方程為.    (12分)
考點(diǎn):求圓的方程

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),圓:,過點(diǎn)的動(dòng)直線與圓交于兩點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn).
(1)求的軌跡方程;
(2)當(dāng)時(shí),求的方程及的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓C0(a>b>0,a,b為常數(shù)),動(dòng)圓C1:x2+y2=t12,b<t1<a.點(diǎn)A1,A2分別為C0的左,右頂點(diǎn),C1與C0相交于A,B,C,D四點(diǎn).

(1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
(2)設(shè)動(dòng)圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:圓C過點(diǎn)A(6,0),B(1,5)且圓心在直線上,求圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).
(1)試求m的值,使圓C的面積最;
(2)求與滿足(1)中條件的圓C相切,且過點(diǎn)(1,-2)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過直線與已知圓的交點(diǎn),且在兩坐標(biāo)軸上的四個(gè)截距之和為8的圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l1、l2分別與拋物線x2=4y相切于點(diǎn)A、B,且A、B兩點(diǎn)的橫坐標(biāo)分別為a、b(a、b∈R).
(1)求直線l1、l2的方程;
(2)若l1、l2與x軸分別交于P、Q,且l1、l2交于點(diǎn)R,經(jīng)過P、Q、R三點(diǎn)作圓C.
①當(dāng)a=4,b=-2時(shí),求圓C的方程;
②當(dāng)a,b變化時(shí),圓C是否過定點(diǎn)?若是,求出所有定點(diǎn)坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知圓O:和點(diǎn)A(1,2),則過A且與圓O相切的直線與兩坐標(biāo)軸圍成的三角形的面積等于         

查看答案和解析>>

同步練習(xí)冊答案