【題目】已知函數(shù)

(1)求函數(shù)的值域;

(2)若時(shí),函數(shù)的最小值為,求的值和函數(shù)的最大值.

【答案】1(1)2

【解析】

試題(1)解本小題的關(guān)鍵是利用,把原函數(shù)轉(zhuǎn)化為關(guān)于t的二次函數(shù),的值域問題.2)在(1)的基礎(chǔ)上可確定上是減函數(shù),然后根據(jù)f(x)的最小值為-7,建立關(guān)于a的方程求出a值,從而得到函數(shù)f(x)的最大值.

設(shè)

1)對稱軸 上是減函數(shù)

所以值域?yàn)?/span>----------------------------------------- 6

2

所以上是減函數(shù)

(不合題意舍去)------------------------11

當(dāng)時(shí)有最大值,

-----------------------------------------------13

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為 , ,
(Ⅰ)設(shè)X表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2-(a-1)x-a<0,a∈R},集合B={x|<0}.

(1)當(dāng)a=3時(shí),求A∩B;

(2)若A∪B=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)慶“六一”晚會(huì)共由6個(gè)節(jié)目組成,演出順序有如下要求:節(jié)目必須排在前兩位,節(jié)目不能排在第一位,節(jié)目必須排在最后一位,該臺晚會(huì)節(jié)目演出順序的編排方案共有( )

A. 36種 B. 42種 C. 48種 D. 54種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2sin(ωx+ )(ω>0)的圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[﹣ , ]上為增函數(shù),則ω的最大值為(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是公差不為0的等差數(shù)列,首項(xiàng)a1=1,且a1 , a2 , a4成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=an+2 ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的左焦點(diǎn)為F1(﹣ ,0),e= . (Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,設(shè)R(x0 , y0)是橢圓C上一動(dòng)點(diǎn),由原點(diǎn)O向圓(x﹣x02+(y﹣y02=4引兩條切線,分別交橢圓于點(diǎn)P,Q,若直線OP,OQ的斜率存在,并記為k1 , k2 , 求證:k1k2為定值;
(Ⅲ)在(Ⅱ)的條件下,試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分別直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

I)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);

II)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知, , ,平面平面, , 中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)求直線與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案