【題目】設(shè)函數(shù),其中,角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn),且.
(Ⅰ)若點(diǎn)的坐標(biāo)為,求的值;
(Ⅱ)若點(diǎn)為線性約束條件所圍成的平面區(qū)域上的一個(gè)動(dòng)點(diǎn),試確定角的取值范圍,并求函數(shù)的最小值和最大值.
【答案】(1)2(2)函數(shù)的最小值為1,最大值為
【解析】
(1)若P點(diǎn)的坐標(biāo)為,根據(jù)三角函數(shù)的定義,可得,,代入可得的值;
(Ⅱ))若點(diǎn)為線性約束條件上的一個(gè)動(dòng)點(diǎn),則,結(jié)合正弦函數(shù)的圖象和性質(zhì)可得函數(shù)f(a)的最小值及取得最小值時(shí)的α的值.
(1)∵點(diǎn)的坐標(biāo)為,可得,
∴由三角函數(shù)的定義,得,,
故.
(2)不等式組表示的平面區(qū)域?yàn)槿鐖D所示的陰影2部分的及其內(nèi)部區(qū)域,
其中、,,
∵為區(qū)域內(nèi)一個(gè)動(dòng)點(diǎn),且為角終邊上的一點(diǎn),
∴運(yùn)動(dòng)點(diǎn),可得當(dāng)與點(diǎn)重合時(shí),取得最大值為;
當(dāng)與線段上一點(diǎn)重合時(shí),取得最小值為.由此可得.
∵,
∴由,可得,
當(dāng)即時(shí),取得最小值;
當(dāng)即時(shí),取得最大值.
綜上所述,函數(shù)的最小值為1,最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)點(diǎn)且與直線相切,圓心的軌跡為曲線.
(1)求曲線的方程;
(2)若,是曲線上的兩個(gè)點(diǎn)且直線過(guò)的外心,其中為坐標(biāo)原點(diǎn),求證:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:經(jīng)過(guò)點(diǎn).
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)設(shè)為原點(diǎn),過(guò)拋物線的焦點(diǎn)作斜率不為0的直線交拋物線于兩點(diǎn),,直線分別交直線,于點(diǎn)和點(diǎn).求證:以為直徑的圓經(jīng)過(guò)軸上的兩個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).
(1) 求的值
(2)求在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開發(fā)成公共綠地,圖中.設(shè)計(jì)時(shí)要求綠地部分(如圖中陰影部分所示)有公共綠地走道,且兩邊是兩個(gè)關(guān)于走道對(duì)稱的三角形(和).現(xiàn)考慮方便和綠地最大化原則,要求點(diǎn)與點(diǎn)均不重合,落在邊上且不與端點(diǎn)重合,設(shè).
(1)若,求此時(shí)公共綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求的長(zhǎng)度最短,求此時(shí)綠地公共走道的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在研究函數(shù)時(shí),給出下面幾個(gè)結(jié)論:
①等式對(duì)恒成立;
②函數(shù)的值域?yàn)?/span>;
③若,則一定;
④對(duì)任意的,若函數(shù)恒成立,則當(dāng)時(shí),或.
其中正確的結(jié)論是____________(寫出所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)從甲、乙兩個(gè)班中各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績(jī)的眾數(shù)是83,乙班學(xué)生成績(jī)的平均數(shù)是86,則的值為( )
A.7B.8C.9D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為的正方體中,,分別是和的中點(diǎn).
()求異面直線與所成角的余弦值.
()在棱上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的是( )
A. 若為真命題,則為真命題 B. 若則恒成立
C. 命題“”的否定是“” D. 命題“若則”的逆否命題是“若,則”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com