已知等差數(shù)列{an}的前n項(xiàng)和為Sn.a3=20-a6,S8等于    .

 

80

【解析】因?yàn)?/span>a3=20-a6,

所以S8=4(a3+a6)=4×20=80.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十八第六章第四節(jié)練習(xí)卷(解析版) 題型:填空題

若當(dāng)x>1時(shí)不等式>m2+1恒成立,則實(shí)數(shù)m的取值范圍是    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)等比數(shù)列{an},n項(xiàng)和為Sn,已知S3=8,S6=7,a7+a8+a9=(  )

(A)(B)-(C)(D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

Sn是等差數(shù)列{an}n項(xiàng)的和,Tn是等比數(shù)列{bn}n項(xiàng)的積,設(shè)等差數(shù)列{an}公差d0,若對小于2011的正整數(shù)n,都有Sn=S2011-n成立,則推導(dǎo)出a1006=0.設(shè)等比數(shù)列{bn}的公比q1,若對于小于23的正整數(shù)n,都有Tn=T23-n成立,(  )

(A)b11=1 (B)b12=1 (C)b13=1 (D)b14=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:解答題

設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,a1=b1=1,a3+b5=21,a5+b3=13.

(1){an},{bn}的通項(xiàng)公式.

(2)求數(shù)列{}的前n項(xiàng)和Sn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

已知數(shù)列{an}的通項(xiàng)公式是an=2n-3()n,則其前20項(xiàng)和為(  )

(A)380-(1-)(B)400-(1-)

(C)420-(1-)(D)440-(1-)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)x,y滿足約束條件z=x-2y的取值范圍為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}是等差數(shù)列,a2=-1,a5=5.

(1){an}的通項(xiàng)an.

(2){an}n項(xiàng)和Sn的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十六選修4-2第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知矩陣A=,向量α=.

(1)A的特征值λ1,λ2和對應(yīng)的特征向量α1,α2.

(2)計(jì)算A5α的值.

 

查看答案和解析>>

同步練習(xí)冊答案