(本小題滿分10分)
如圖,⊙O內切于△ABC的邊于D,E,F,AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G。
(1)求證:圓心O在直線AD上;
(2)求證:點C是線段GD的中點。
(1)
又△ABC是等腰三角形,所以AD是∠CAB的角分線
∴圓心O在直線AD上。(2))連接DF,由(I)知,DH是⊙O的直徑, ∴∠DFH=90°,∴∠FDH+∠FHD=90°,又∠G+∠FHD=90°,∴∠FDH=∠G,又⊙O與AC相切于點F ,∴∠AFH=∠GCF=∠FHD ∴∠GCF=∠G,∴CG=CF=CD,∴點C是線段GD的中點。
【解析】
試題分析:(I)證明:
又△ABC是等腰三角形,所以AD是∠CAB的角分線
∴圓心O在直線AD上!5分
(II)連接DF,由(I)知,DH是⊙O的直徑,
∴∠DFH=90°,∴∠FDH+∠FHD=90°
又∠G+∠FHD=90°,∴∠FDH=∠G
又⊙O與AC相切于點F
∴∠AFH=∠GCF=∠FHD ∴∠GCF=∠G
∴CG=CF=CD
∴點C是線段GD的中點。 ………………10分
考點:圓的切線的性質定理證明。
點評:本題利用了切線的性質,四邊形的內角和為360度及圓周角定理求解.屬于基礎題型。
科目:高中數學 來源: 題型:
|
|
1 |
2a |
1 |
2b |
1 |
2c |
1 |
b+c |
1 |
c+a |
1 |
a+b |
查看答案和解析>>
科目:高中數學 來源: 題型:
|
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com