【題目】某池塘中原有一塊浮草,浮草蔓延后的面積(平方米)與時間(月)之間的函數(shù)關(guān)系式是,它的圖象如圖所示,給出以下命題:①池塘中原有浮草的面積是平方米;②第個月浮草的面積超過平方米;③浮草每月增加的面積都相等;④若浮草面積達(dá)到平方米,平方米,平方米所經(jīng)過的時間分別為,則.其中正確命題的序號有_____.(注:請寫出所有正確結(jié)論的序號)

【答案】①②④

【解析】

直接利用函數(shù)的圖象求出函數(shù)的解析式,進(jìn)一步利用函數(shù)的額關(guān)系式再利用函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.

解:浮草蔓延后的面積(平方米)與時間(月)之間的函數(shù)關(guān)系式是,函數(shù)的圖象經(jīng)過

所以 ,解得

①當(dāng),故選項(xiàng)A正確.

②當(dāng)?shù)?/span>個月時,,故②正確.

③當(dāng)時,,增加,當(dāng)時,,增加,故每月的增加不相等,故③錯誤.

④根據(jù)函數(shù)的解析式,解得,

同理,,

所以,

所以則.故④正確.

故答案為:①②④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直線xx1,xx2yf(x)圖象的任意兩條對稱軸,且|x1x2|的最小值為 .

(Ⅰ)求f(x)的表達(dá)式;

(Ⅱ)將函數(shù)f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求函數(shù)g(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線的準(zhǔn)線軸交于橢圓的右焦點(diǎn),為左焦點(diǎn),橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長于點(diǎn)上一動點(diǎn),且在之間移動.

(1)當(dāng)取最小值時,求的方程;

(2)若的邊長恰好是三個連接的自然數(shù),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在 , , , , (單位:克)中,其頻率分布直方圖如圖所示.

(1)按分層抽樣的方法從質(zhì)量落在, 的蜜柚中抽取5個,再從這5個蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:

A.所有蜜柚均以40元/千克收購;

B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.

請你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4。

  1. 求橢圓的方程;
  2. 設(shè)直線與橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為(),點(diǎn)在線段的垂直平分線上,且,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使得成立.

(1)函數(shù)是否屬于集合M?說明理由;

(2)設(shè)函數(shù),求的取值范圍;

(3)已知函數(shù)圖象與函數(shù)的圖象有交點(diǎn),根據(jù)該結(jié)論證明:函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的個數(shù)是( )

①命題:“、,若,則”,用反證法證明時應(yīng)假設(shè)

②若,則、中至少有一個大于

③若、、、、成等比數(shù)列,則;

④命題:“,使得”的否定形式是:“,總有.

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意,都有,且對任意∈D,當(dāng)時,恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

)判斷函數(shù)是否為R上的平底型函數(shù)? 并說明理由;

)設(shè)是()中的平底型函數(shù),k為非零常數(shù),若不等式對一切R恒成立,求實(shí)數(shù)的取值范圍;

)若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機(jī)摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球?yàn)榘浊虻母怕适嵌嗌伲?

2)摸出的3個球?yàn)?/span>2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計(jì))能賺多少錢?

查看答案和解析>>

同步練習(xí)冊答案