【答案】
分析:(Ⅰ)由題設(shè)知當(dāng)n≥1時,
,所以
,
,由此能夠?qū)С?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182646104343448/SYS201310241826461043434020_DA/3.png">.
(Ⅱ)由a
1=1,
,知
,當(dāng)n≥2時,
,上此入手能導(dǎo)出
.
(Ⅲ)
=
,由此知b
n+1<b
n.
解答:解:(Ⅰ)由于a
1=1,a
2=2,
,易知對?n≥1,a
n≠0.
當(dāng)n≥1時,
可得
,
從而
,
依此遞推可得
,
從而
,(n=1,2,3,)(4分)
(Ⅱ)顯然,由a
1=1,
可知:?n≥1,a
n≥1成立,即
,
當(dāng)n≥2時,
,
故2<a
n2-a
n-12≤3,于是2<a
n2-a
n-12≤32<a
n-12-a
n-22≤32<a
n-22-a
n-32≤3
2<a
32-a
22≤32<a
22-a
12≤3
將經(jīng)上各式相加得2(n-1)<a
n2-a
12≤3(n-1),
即得
;(亦可用數(shù)學(xué)歸納法)(9分)
(Ⅲ)
=
,故b
n+1<b
n.(13分)
點評:本題考查數(shù)列的性質(zhì)和綜合運用,解題時要認真審題,仔細解答.