,將個數(shù)依次放入編號為1,2,…,個位置,得到排列,將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應的前和后個位置,得到排列,將此操作稱為變換,將分成兩段,每段個數(shù),并對每段作變換,得到;當時,將分成段,每段個數(shù),并對每段作變換,得到,例如,當時,,此時,位于中的第4個位置.當時,位于中的第            個位置.

 

【答案】

【解析】

試題分析:當時,排列是將個數(shù)分成段,每段有個數(shù).排列的第1段數(shù)列的通項為 ,排列的前兩段數(shù)列的通項分別為 ,排列的前四段數(shù)列的通項分別為 ,排列的前八段數(shù)列的通項分別為 ,∵,

中第四段的第11個數(shù),即位于中的第個位置.

考點:1.數(shù)列的通項;2.理解信息題的能力.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設N=2n(n∈N*,n≥2),將N個數(shù)x1,x2,…,xN依次放入編號為1,2,…,N的N個位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應的前
N
2
個數(shù)和后
N
2
個位置,得到排列P1=x1x3…xN-1x2x4…xN,將此操作稱為C變換,將P1分成兩段,每段
N
2
個數(shù),并對每段作C變換,得到P2當2≤i≤n-2時,將Pi分成2i段,每段
N
2i
個數(shù),并對每段C變換,得到Pi+1,例如,當N=8時,P2=x1x5x3x7x2x6x4x8,此時x7位于P2中的第4個位置.當N=16時,x7位于P2中的第
6
6
個位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•湖南)設N=2n(n∈N*,n≥2),將N個數(shù)x1,x2,…,xN依次放入編號為1,2,…,N的N個位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應的前
N
2
和后
N
2
個位置,得到排列P1=x1x3…xN-1x2x4…xN,
將此操作稱為C變換,將P1分成兩段,每段
N
2
個數(shù),并對每段作C變換,得到P2,當2≤i≤n-2時,將Pi分成2i段,每段
N
2i
個數(shù),并對每段作C變換,得到Pi+1,例如,當N=8時,P2=x1x5x3x7x2x6x4x8,此時x7位于P2中的第4個位置.
(1)當N=16時,x7位于P2中的第
6
6
個位置;
(2)當N=2n(n≥8)時,x173位于P4中的第
3×2n-4+11
3×2n-4+11
個位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012年高考(湖南理))設N=2n(n∈N*,n≥2),將N個數(shù)x1,x2,,xN依次放入編號為1,2,,N的N個位置,得到排列P0=x1x2xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應的前和后個位置,得到排列P1=x1x3xN-1x2x4xN,將此操作稱為C變換,將P1分成兩段,每段個數(shù),并對每段作C變換,得到;當2≤i≤n-2時,將Pi分成2i段,每段個數(shù),并對每段C變換,得到Pi+1,例如,當N=8時,P2=x1x5x3x7x2x6x4x8,此時x7位于P2中的第4個位置.

(1)當N=16時,x7位于P2中的第___個位置;

(2)當N=2n(n≥8)時,x173位于P4中的第___個位置.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數(shù)學(湖南卷解析版) 題型:填空題

N=2nn∈N*,n≥2),將N個數(shù)x1,x2,…,xN依次放入編號為1,2,…,N的N個位置,得到排列P0=x1x2…xN.將該排列中分別位于奇數(shù)與偶數(shù)位置的數(shù)取出,并按原順序依次放入對應的前和后個位置,得到排列P1=x1x3…xN-1x2x4…xN,將此操作稱為C變換,將P1分成兩段,每段個數(shù),并對每段作C變換,得到;當2≤i≤n-2時,將Pi分成2i段,每段個數(shù),并對每段C變換,得到Pi+1,例如,當N=8時,P2=x1x5x3x7x2x6x4x8,此時x7位于P2中的第4個位置.

(1)當N=16時,x7位于P2中的第___個位置;

(2)當N=2n(n≥8)時,x173位于P4中的第___個位置.

 

查看答案和解析>>

同步練習冊答案