12.在△ABC中,角A、B、C的對邊分別為a、b、c,$\overrightarrow m=(b,c-a),\overrightarrow n=(b-c,c+a)$,若$\overrightarrow m⊥\overrightarrow n,a=3$,
則$\frac{c}{sinC}$的值為( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.6

分析 由題意利用平面向量的數(shù)量積運算法則列出關(guān)系式,整理后利用余弦定理可求cosA的值,進而即可確定出A的度數(shù),利用正弦定理即可計算得解.

解答 解:∵$\overrightarrow m=(b,c-a),\overrightarrow n=(b-c,c+a)$,$\overrightarrow{m}⊥\overrightarrow{n}$,
∴b(b-c)+(c-a)(c+a)=0,可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∴由A∈(0,π),可得A=$\frac{π}{3}$,
∵a=3,
∴由正弦定理可得:$\frac{c}{sinC}=\frac{a}{sinA}=\frac{3}{sin\frac{π}{3}}$=2$\sqrt{3}$.
故選:B.

點評 本題主要考查了正弦定理,余弦定理,平面向量及應用,解題時要注意分析角的范圍,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)$y=\frac{1}{{\sqrt{{x^2}-2x-3}}}+{(x-4)^0}$的定義域為{x|x>3或x<-1且x≠4}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.二項式${(\sqrt{x}+\frac{1}{3x})^n}$的展開式中只有第四項的二項式系數(shù)最大,則展開式中的常數(shù)項是( 。
A.$\frac{5}{9}$B.$\frac{5}{3}$C.5D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.小明和小剛正在做擲骰子游戲,兩人各擲一枚骰子,當兩枚骰子點數(shù)之和為奇數(shù)時,小剛得1分,否則小明得1分.這個游戲公平嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.log279=( 。
A.$\frac{1}{3}$B.$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,直三棱柱(側(cè)棱垂直于底面)ABC-A1B1C1中,$CA=CB=\frac{1}{2}C{C_1}$,點D棱AA1的中點,且C1D⊥BD.
(1)求證:CA⊥CB;
(2)若CA=1,求四棱錐C1-A1B1BD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知向量$\overrightarrow m=(a,b,0),\overrightarrow n=(c,d,1)$其中a2+b2=c2+d2=1,現(xiàn)有以下命題:
(1)向量$\overrightarrow n$與z軸正方向的夾角恒為定值(即與c,d無關(guān) );
(2)$\overrightarrow m•\overrightarrow n$的最大值為$\sqrt{2}$;
(3)$\left?{\overrightarrow m,\overrightarrow n}\right>$($\overrightarrow m•\overrightarrow n$的夾角)的最大值為$\frac{3π}{4}$;
(4)若定義$\overrightarrow u×\overrightarrow v=|{\overrightarrow u}|•|{\overrightarrow v}|sin\left?{\overrightarrow u,\overrightarrow v}\right>$,則$|{\overrightarrow m×\overrightarrow n}|$的最大值為$\sqrt{2}$.
其中正確的命題有(1)(3)(4).(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若向量$\overrightarrow a,\overrightarrow b滿足|{\overrightarrow a}|=1,|{\overrightarrow b}|≤1,且以向量\overrightarrow a,\overrightarrow b為鄰邊的平行四邊形的面積是\frac{1}{2}$,則$\overrightarrow a與\overrightarrow b的夾角θ的取值范圍是$[30°,150°]或[$\frac{π}{6}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)奇函數(shù)f(x)在區(qū)間[-7,-3]上是減函數(shù)且最大值為-5,函數(shù)g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判斷并用定義法證明函數(shù)g(x)在(-2,+∞)上的單調(diào)性;
(2)求函數(shù)F(x)=f(x)+g(x)在區(qū)間[3,7]上的最小值.

查看答案和解析>>

同步練習冊答案