,B={x|x>a},若A⊆B,則實數(shù)a的取值范圍是( )
A.
B.
C.a(chǎn)≤1
D.a(chǎn)<1
【答案】分析:根據(jù)題意A集合中的元素是在區(qū)間(,5)內(nèi)的整數(shù),再利用A⊆B,求出a符合的條件即可.
解答:解:∵A={x|<x<5,x∈Z},∴A={1,2,3,4}
∵A⊆B,∴a<1
故選D
點評:本題考查集合中參數(shù)的取值問題.正確理解集合語言是解決此類題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省臺州市臨海市杜橋中學高三(下)3月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省重點中學協(xié)作體高三第一次聯(lián)考數(shù)學試卷(理科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學試卷(文科)(解析版) 題型:選擇題

設f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習冊答案