已知橢圓的離心率為,過右頂點A的直線l與橢圓C相交于A、B兩點,且.

(1)求橢圓C和直線l的方程;

(2)記曲線C在直線l下方的部分與線段AB所圍成的平面區(qū)域(含邊界)為D.若

曲線D有公共點,試求實數(shù)m的最小值.

(1) 

(2)


解析:

(1)由離心率,得,即.    ① ………2分

又點在橢圓上,即.     ② ……4分

解 ①②得,

故所求橢圓方程為.          …………………6分

得直線l的方程為. ………8分

(2)曲線

即圓,其圓心坐標為,半徑,表示圓心在直線上,半徑為的動圓.                ……… 10分

由于要求實數(shù)m的最小值,由圖可知,只須考慮的情形.

與直線l相切于點T,則由,得,………… 12分

時,過點與直線l垂直的直線的方程為,

解方程組.                       ………… 14分

因為區(qū)域D內(nèi)的點的橫坐標的最小值與最大值分別為, 

所以切點,由圖可知當過點B時,m取得最小值,即

解得.                                     ………… 16分

    

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構成的“眼形”結(jié)構中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準線方程為x=±8,求這個橢圓的標準方程;
(2)假設你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案