(14分)

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說明理由。

 

【答案】

 

解:(1)依題意,可設(shè)橢圓C的方程為,且可知左焦點(diǎn)為F(-2,0),

從而有,解得,

,所以,故橢圓C的方程為

(2)假設(shè)存在符合題意的直線,其方程為,

因?yàn)橹本與橢圓有公共點(diǎn),所以有

解得,

另一方面,由直線OA與的距離4可得:,從而,

由于,所以符合題意的直線不存在。

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn)的橢圓經(jīng)過直線x-2y-4=0與坐標(biāo)軸的兩個(gè)交點(diǎn),則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn),
( I)求橢圓C的方程;
( I I)問是否存在直線l:y=
32
x+t
,使直線l與橢圓C有公共點(diǎn),且原點(diǎn)到直線l的距離為4?若存在,求出l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•麗水一模)已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓過點(diǎn)P(2,3),且它的離心率e=
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓(x+1)2+y2=1相切的直線l:y=kx+t交橢圓于M,N兩點(diǎn),若橢圓上一點(diǎn)C滿足
OM
+
ON
OC
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)已知中心在坐標(biāo)原點(diǎn)焦點(diǎn)在x軸上的橢圓C,其長(zhǎng)軸長(zhǎng)等于4,離心率為
2
2

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)E(0,1),問是否存在直線l:y=kx+m與橢圓C交于M,N兩點(diǎn),且|ME|=|NE|?若存在,求出k的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在坐標(biāo)原點(diǎn)的雙曲線C的焦距為6,離心率等于3,則雙曲線C的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案