平面內(nèi)有n個(gè)圓,其中任何兩個(gè)圓都有兩個(gè)交點(diǎn),任何三個(gè)圓都沒有共同的交點(diǎn),試證明這n個(gè)圓把平面分成了n2-n+2個(gè)區(qū)域.

證明:(1)當(dāng)n=1時(shí),一個(gè)圓把平面分成兩個(gè)區(qū)域,而12-1+2=2,命題成立.
(2)假設(shè)n=k(k≥1)時(shí),命題成立,即k個(gè)圓把平面分成k2-k+2個(gè)區(qū)域.
當(dāng)n=k+1時(shí),第k+1個(gè)圓與原有的k個(gè)圓有2k個(gè)交點(diǎn),這些交點(diǎn)把第k+1個(gè)圓分成了2k段弧,
而其中的每一段弧都把它所在的區(qū)域分成了兩部分,因此增加了2k個(gè)區(qū)域,
共有k2-k+2+2k=(k+1)2-(k+1)+2個(gè)區(qū)域.
∴n=k+1時(shí),命題也成立.
由(1)、(2)知,對(duì)任意的n∈N*,命題都成立.
分析:直接利用數(shù)學(xué)歸納法的證明方法,驗(yàn)證n=1時(shí)命題成立,然后假設(shè)n=k時(shí)命題成立,證明n=k+1時(shí)命題也成立即可.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查數(shù)學(xué)歸納法的證明方法,注意n=k+1的證明過程,增加了2k個(gè)區(qū)域,這是證明的關(guān)鍵所在,兩個(gè)步驟缺一不可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

31、平面內(nèi)有n個(gè)圓,其中每兩個(gè)圓都交于兩點(diǎn),且無三個(gè)圓交于一點(diǎn),求證:這n個(gè)圓將平面分成n2+n+2個(gè)部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、平面內(nèi)有n個(gè)圓,其中任何兩個(gè)圓都有兩個(gè)交點(diǎn),任何三個(gè)圓都沒有共同的交點(diǎn),試證明這n個(gè)圓把平面分成了n2-n+2個(gè)區(qū)域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)有n個(gè)圓,其中每兩個(gè)圓都相交于兩點(diǎn),且每三個(gè)圓都不相交于同一點(diǎn),求證這n個(gè)圓把平面分成n2n+2部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)有n個(gè)圓,其中每兩個(gè)圓都相交于兩點(diǎn),且無任何三個(gè)圓相交于一點(diǎn),求證:這n個(gè)圓將平面分成f(n)=n2-n+2個(gè)部分.

查看答案和解析>>

同步練習(xí)冊答案