【題目】已知定義在R上的函數(shù)f(x)滿足 為常數(shù)

(1)求函數(shù)f(x)的表達(dá)式;

(2)如果f(x)為偶函數(shù),求a的值;

(3)當(dāng)f(x)為偶函數(shù)時(shí),若方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2;其中x1<0,0<x2<1;求實(shí)數(shù)m的范圍.

【答案】1fx=2x+a2x;(213

【解析】解:(1f(x)=x+,a是常數(shù),令t=x,x=,

∴f(t)==2t+a2t 從而有f(x)=2x+a2x;

(2)∵f(x)為偶函數(shù),∴f(﹣x)=f(x)

∴2x+a2x=2x+a2x整理可得,(a﹣1)2x=(a﹣1)2x

∴a=1

(3)由(2)可得f(x)為偶函數(shù),a=1,f(x)=2x+2x

n=2x,n>0,f(n)=n+,n>0的圖象如圖,

結(jié)合圖象可得方程f(x)=m有兩個(gè)實(shí)數(shù)根x1,x2,

其中x1<0,0<x2<1f(n)=m有兩個(gè)實(shí)數(shù)根n1,n2其中0<n1<1,1<n2<2

而函數(shù)f(n)=n+在(0,1)上單調(diào)遞減,在(1,2)單調(diào)遞增

結(jié)合圖象可得,函數(shù)有兩個(gè)交點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次歌手大獎(jiǎng)賽上,七位評(píng)委為歌手打出的分?jǐn)?shù)如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均值和方差分別為(
A.9.4,0.484
B.9.4,0.016
C.9.5,0.04
D.9.5,0.016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上三個(gè)向量 的模均為1,它們相互之間的夾角均為120°.
(1)求證: ;
(2)若|k |>1 (k∈R),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的外接圓半徑R= ,角A,B,C的對(duì)邊分別是a,b,c,且 =
(1)求角B和邊長(zhǎng)b;
(2)求SABC的最大值及取得最大值時(shí)的a,c的值,并判斷此時(shí)三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A是實(shí)數(shù)集R的子集,如果x0∈R滿足:對(duì)任意a>0,都存在x∈A,使得0<|x﹣x0|<a,則稱x0為集合A的聚點(diǎn),給出下列集合(其中e為自然對(duì)數(shù)的底):①{1+ |x>0};②{2x|x∈N};③{x2+x+2|x∈R};④{lnx|x>0且x≠e},其中,以1為聚點(diǎn)的集合有(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師開(kāi)車(chē)上班,有路線①與路線②兩條路線可供選擇. 路線①:沿途有兩處獨(dú)立運(yùn)行的交通信號(hào)燈,且兩處遇到綠燈的概率依次為,若處遇紅燈或黃燈,則導(dǎo)致延誤時(shí)間2分鐘;若處遇紅燈或黃燈,則導(dǎo)致延誤時(shí)間3分鐘;若兩處都遇綠燈,則全程所花時(shí)間為20分鐘.

路線②:沿途有兩處獨(dú)立運(yùn)行的交通信號(hào)燈,且兩處遇到綠燈的概率依次為,若處遇紅燈或黃燈,則導(dǎo)致延誤時(shí)間8分鐘;若處遇紅燈或黃燈,則導(dǎo)致延誤時(shí)間5分鐘;若兩處都遇綠燈,則全程所花時(shí)間為15分鐘.

(1)若張老師選擇路線①,求他20分鐘能到校的概率;

(2)為使張老師日常上班途中所花時(shí)間較少,你建議張老師選擇哪條路線?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè),證明:當(dāng)時(shí),

(Ⅲ)設(shè)的兩個(gè)零點(diǎn),證明 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角所對(duì)的邊分別為,已知.

(1)求角的大;

(2),且,求邊;

(3),求周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x) (xR)

(1)求函數(shù)f(x)的最小值;

(2)已知mR,命題p:關(guān)于x的不等式f(x)m22m2對(duì)任意xR恒成立;q:函數(shù)y(m21)x是增函數(shù).若“pq”為真,“pq”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案