(不等式選做題)已知函數(shù)f(x)=|2x+1|,g(x)=|x|+a.若存在x∈R,使得f(x)≤g(x)成立,則實數(shù)a的取值范圍為   
【答案】分析:先由f(x)≤g(x)分離出參數(shù)a得a≥|2x+1|-|x|,令h(x)=|2x+1|-|x|,下面求得h(x)的最小值,從而所求實數(shù)a的范圍.
解答:解:由f(x)≤g(x)得a≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,則 h(x)=(7分)
,從而所求實數(shù)a的范圍為 (10分)
故答案為:[-,+∞]
點評:題主要考查了絕對值不等式的解法、函數(shù)存在性問題.對于函數(shù)存在性問題,處理的方法是:利用分離參數(shù)法轉化為求函數(shù)的最值問題解決.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

選做題(考生只能從A,B,C中選做一題,多做以所做第一題記分)
A.(不等式選做題)
已知a∈R,若關于x的方程x2+4x+|a-1|+|a+1|=0無實根,則a的取值范圍是
(-∞,-2)∪(2,+∞)
(-∞,-2)∪(2,+∞)

B.(幾何證明選做題)
如圖,CD是圓O的切線,切點為C,點A、B在圓O上,BC=1,∠BCD=30°,則圓O的面積為
π
π

C.(坐標系與參數(shù)方程選做題)
在極坐標系中,若過點(1,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點,則|AB|=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•陜西)(不等式選做題) 
已知a,b,m,n均為正數(shù),且a+b=1,mn=2,則(am+bn)(bm+an)的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(不等式選做題)已知函數(shù)f(x)=|2x+1|,g(x)=|x|+a.若存在x∈R,使得f(x)≤g(x)成立,則實數(shù)a的取值范圍為
[-
1
2
,+∞].
[-
1
2
,+∞].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(不等式選做題)已知不等式(x+y)( + )≥9對任意正實數(shù)x,y恒成立,則正實數(shù)a的最小值為_____.

查看答案和解析>>

同步練習冊答案