如圖,已知四棱錐P-ABCD的底面是邊長為2的正方形,PD⊥面ABCD,PD=2,E,F(xiàn)分別為BC,AD的中點.
(Ⅰ)求直線DE與面PBC所成的角;
(Ⅱ)求二面角P-BF-D的大。
分析:(Ⅰ)求直線DE與面PBC所成的角的關(guān)鍵是作出線面角,因此需找面PBC得垂線,取PC的中點N,連接DN,EN,易得DN⊥面PBC,從而∠DEN為直線DE與面PBC所成的角,故可求;
(Ⅱ)過D作DM⊥BF,交BF的延長線于M,連接PM,則易得∠PMD為二面角P-BF-D的平面角,根據(jù)Rt△DMF與Rt△BAF相似,可求其正切值,從而得解.
解答:解:(Ⅰ)取PC的中點N,連接DN,EN,∵PD⊥面ABCD,∴PD⊥BC,
又由題意,有BC⊥DC∴BC⊥面PDC,∴面PBC⊥面PDC,
又PD=DC知DN⊥PC,∴DN⊥面PBC,
所以∠DEN為直線DE與面PBC所成的角,…(4分)
由題意DN=
2
,DE=
5
,
所以sin∠DEN=
2
5
=
10
5
,
所求角為arcsin
10
5
…(7分)
(Ⅱ)過D作DM⊥BF,交BF的延長線于M,連接PM,∵PD⊥面ABCD,所以PM在面ABCD內(nèi)的射影為DM,∴PM⊥BF,
所以∠PMD為二面角P-BF-D的平面角…(10分)
由Rt△DMF與Rt△BAF相似,所以
DM
AB
=
DF
BF
⇒DM=
2
5

所以tan∠PMD=
PD
DM
=
5

所求二面角大小為arctan
5
…(13分)
點評:本題以四棱錐為載體,考查線面角、面面角,步驟是:作、證、求,關(guān)鍵是作出相應的角.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點,
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點.
(1)證明:AE⊥PD;
(2)設AB=2,若H為線段PD上的動點,EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點E是BC邊上的中點.
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點,AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習冊答案