已知y=f(x)為一次函數(shù),且f(2),f(5),f(4)成等比數(shù)列,f(8)=15,求Sn=f(1)+f(2)+…+f(n)的表達(dá)式.

設(shè)y=f(x)=kx+b,則f(2)=2k+b,f(5)=5k+b,f(4)=4k+b,

依題意,[f(5)]2=f(2)·f(4),

即(5k+b)2=(2k+b)(4k+b),

化簡得k(17k+4b)=0.

∵k≠0,∴b=-k.                      ①

又∵f(8)=8k+b=15,                      ②

將①代入②得k=4,b=-17.

∴Sn=f(1)+f(2)+…+f(n)=(4×1-17)+(4×2-17)+…+(4n-17)=4(1+2+…+n)-17n=2n2-15n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)已知函數(shù)f(x)=
3
sin(ωx+φ)-cos(ωx+φ)
(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2

(Ⅰ)求ω和φ的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•德州一模)已知函數(shù)f(x)=x-
1n|x|
x2
,則函數(shù)y=f(x)的大致圖象為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)已知函數(shù)f(x)=|1-
1x
|

(I)是否存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f (x)的定義域和值域都是[a,b].若存在,求出a,b的值;若不存在,請說明理由;
(II)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f (x)的定義域?yàn)閇a,b],值域?yàn)閇ma,mb](m≠0).求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案