甲、乙、丙三人參加了一家公司的招聘面試,設每人面試合格的概率都是
1
2
,且面試是否合格互不影響求:
(1)三人面試都不合格的概率;
(2)至少有1人面試合格的概率.
(1)設“甲、乙、丙三人每個人面試合格”分別為事件A,B,C,則P(A)=P(B)=P(C)=
1
2
,
則三人面試都不合格的概率為 P(
.
A
)P(
.
B
)P(
.
C
)=(
1
2
)3=
1
8

(2)至少有1人面試合格的概率是1減去每個人面試都不合格的概率,
1-P(
.
A
.
B
.
C
)=1-P(
.
A
)P(
.
B
)P(
.
C
)=1-(
1
2
)3=
7
8
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某校研究性學習小組從汽車市場上隨機抽取20輛純電動汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計結果分成5組:,繪制成如圖所示的頻率分布直方圖.

(1)求直方圖中的值;
(2)求續(xù)駛里程在的車輛數(shù);
(3)若從續(xù)駛里程在的車輛中隨機抽取2輛車,求其中恰有一輛車的續(xù)駛里程為的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個袋中裝有8個大小質地相同的球,其中4個紅球、4個白球,現(xiàn)從中任意取出四個球,設X為取得紅球的個數(shù).
(1)求X的分布列;
(2)若摸出4個都是紅球記5分,摸出3個紅球記4分,否則記2分.求得分的期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某企業(yè)生產(chǎn)的乒乓球被08年北京奧委會指定為乒乓球比賽專用球.日前有關部門對某批產(chǎn)品進行了抽樣檢測,檢查結果如下表所示:
抽取球數(shù)n
50
100
200
500
1 000
2 000
優(yōu)等品數(shù)m
45
92
194
470
954
1 902
優(yōu)等品頻率
 
 
 
 
 
 
(1)計算表中乒乓球優(yōu)等品的頻率;
(2)從這批乒乓球產(chǎn)品中任取一個,質量檢查為優(yōu)等品的概率是多少?(結果保留到小數(shù)點后三位)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

從汽車東站駕車至汽車西站的途中要經(jīng)過8個交通崗,假設某輛汽車在各交通崗遇到紅燈的事件是獨立的,并且概率都是
1
3

(1)求這輛汽車首次遇到紅燈前,已經(jīng)過了兩個交通崗的概率;
(2)這輛汽車在途中恰好遇到4次紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在新年聯(lián)歡晚會上,游戲獲勝者甲和乙各有一次抽獎機會,共有10個獎品,其中一等獎6個,二等獎4個,甲、乙二人依次抽。
(1)甲抽到一等獎,乙抽到二等獎的概率是多少?
(2)甲、乙二人中至少有一人抽到一等獎的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

三人獨立破譯同一份密碼.已知三人各自破譯出密碼的概率分別為
1
5
,
1
4
,
1
3
,且他們是否破譯出密碼互不影響.
(Ⅰ)求恰有二人破譯出密碼的概率;
(Ⅱ)“密碼被破譯”與“密碼未被破譯”的概率哪個大?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個袋中裝有大小相同的5個白球和3個紅球,現(xiàn)在不放回的取2次球,每次取出一個球,記“第1次拿出的是白球”為事件,“第2次拿出的是白球”為事件,則事件同時發(fā)生的概率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

集合,,點P的坐標為(,),,,則點P在直線下方的概率為          .[

查看答案和解析>>

同步練習冊答案