【題目】甲、乙兩所學(xué)校高三年級分別有1 200人,1 000人,為了了解兩所學(xué)校全體高三年級學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計表如下:

甲校:

分組

[70,80)

[80,90)

[90,100)

[100,110)

頻數(shù)

3

4

8

15

分組

[110,120)

[120,130)

[130,140)

[140,150]

頻數(shù)

15

x

3

2

乙校:

分組

[70,80)

[80,90)

[90,100)

[100,110)

頻數(shù)

1

2

8

9

分組

[110,120)

[120,130)

[130,140)

[140,150]

頻數(shù)

10

10

y

3

x,y的值分別為( )

(A)、12,7 (B)、 10,7 (C)、 10,8 (D)、 11,9

【答案】B

【解析】從甲校抽取110× =60(人),

從乙校抽取110×=50(人),故x=10,y=7.

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列說法錯誤的是( )

A. 的極小值點 B. 函數(shù)有且只有1個零點

C. 存在正實數(shù),使得恒成立 D. 對任意兩個正實數(shù),且,若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)當(dāng)時,求曲線上的點到直線的距離的最大值;

(Ⅱ)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和ADPQ均為正方形,他們所在的平面互相垂直,動點M在線段PQ上,E,F(xiàn)分別為AB,BC的中點,設(shè)異面直線EM與AF所成的角為θ,則cosθ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,AB=AC=1,∠BAC=90°,且異面直線A1B與B1C1所成的角等于60°,設(shè)AA1=a.

(1)求a的值;
(2)求平面A1BC1與平面B1BC1所成的銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= 的定義域為R,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),實數(shù)為常數(shù)).

1)若,且函數(shù)上的最小值為0,求的值;

2)若對于任意的實數(shù),函數(shù)在區(qū)間上總是減函數(shù),對每個給定的,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是邊長為1的菱形, 底面ABCD,SA=2,M為SA的中點.

(1)求異面直線AB與MD所成角的大。
(2)求直線AS與平面SCD所成角的正弦值;
(3)求平面SAB與平面SCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動直線l過點 ,且與圓O:x2+y2=1交于A、B兩點.
(1)若直線l的斜率為 ,求△OAB的面積;
(2)若直線l的斜率為0,點C是圓O上任意一點,求CA2+CB2的取值范圍;
(3)是否存在一個定點Q(不同于點P),對于任意不與y軸重合的直線l,都有PQ平分∠AQB,若存在,求出定點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案