【題目】下面幾種推理過程是演繹推理的是( )
A.某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50人
B.兩條直線平行,同旁內(nèi)角互補(bǔ),如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠A+∠B=180°
C.由平面三角形的性質(zhì),推測(cè)空間四邊形的性質(zhì)
D.在數(shù)列{an}中,a1=1,an= (an-1+ )(n≥2),由此歸納出{an}的通項(xiàng)公
【答案】B
【解析】演繹推理是由普通性的前提推出特殊性結(jié)論的推理.其形式在高中階段主要學(xué)習(xí)了三段論:大前提、小前提、結(jié)論,由此對(duì)四個(gè)命題進(jìn)行判斷得出正確選項(xiàng). A選項(xiàng)“高三1班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50人”是歸納推理;故錯(cuò); B選項(xiàng)是演繹推理,大前提是“兩條直線平行,同旁內(nèi)角互補(bǔ),”,小前提是“∠A與∠B是兩條平行直線的同旁內(nèi)角”,結(jié)論是“∠A+∠B=180°”,故正確; C選項(xiàng)“由平面三角形的性質(zhì),推出空間四邊形的性質(zhì)”是類比推理;故錯(cuò); D選項(xiàng)“在數(shù)列 中, , ,通過計(jì)算 由此歸納出{an}的通項(xiàng)公式”是歸納推理.故錯(cuò). 綜上得,B符合題意.
所以答案是:B .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線 ( 為參數(shù))以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為 .
(1)將曲線 的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)M的直角坐標(biāo)為 ,直線l與曲線C的交點(diǎn)為A,B,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)若,求使得成立的的集合;
(2)當(dāng)時(shí),函數(shù)只有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在試制某種洗滌劑新產(chǎn)品時(shí),不同添加劑的種類以及添加的順序?qū)Ξa(chǎn)品的性質(zhì)都有影響,需要對(duì)各種不同的搭配方式做實(shí)驗(yàn)進(jìn)行比較.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用,根據(jù)試驗(yàn)設(shè)計(jì)原理,需要隨機(jī)選取兩種不同的添加劑先后添加進(jìn)行實(shí)驗(yàn).
(1)求兩種添加劑芳香度之和等于5的概率;
(2)求兩種添加劑芳香度之和大于5,且后添加的添加劑芳香度較大的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為1的球O內(nèi)切于正四面體A﹣BCD,線段MN是球O的一條動(dòng)直徑(M,N是直徑的兩端點(diǎn)),點(diǎn)P是正四面體A﹣BCD的表面上的一個(gè)動(dòng)點(diǎn),則 的取值范圍是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com