【題目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},則(RA)∩B的元素的個數(shù)為( )
A.3
B.4
C.5
D.6
【答案】C
【解析】解:∵集合A={x|﹣5+21x﹣4x2<0}={x|x< 或x>5}, B={x∈Z|﹣3<x<6}={﹣2,﹣1,0,1,2,3,4,5},
∴CRA={x| },
∴(RA)∩B={1,2,3,4,5},
∴(RA)∩B的元素的個數(shù)為5.
故選:C.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】觀察下列等式:
(sin )﹣2+(sin )﹣2= ×1×2;
(sin )﹣2+(sin )﹣2+(sin )﹣2+sin( )﹣2= ×2×3;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×3×4;
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+sin( )﹣2= ×4×5;
…
照此規(guī)律,
(sin )﹣2+(sin )﹣2+(sin )﹣2+…+(sin )﹣2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱臺ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求直線BD與平面ACFD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平面斜坐標系xOy中,∠xOy=60°,平面上任意一點P關于斜坐標系的斜坐標是這樣定義的:若=xe1+ye2(其中e1,e2分別為x軸、y軸同方向的單位向量),則點P的斜坐標為(x,y).
(1)若點P在斜坐標系xOy中的斜坐標為(2,-2),求點P到原點O的距離.
(2)求以原點O為圓心,1為半徑的圓在斜坐標系xOy中的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x﹣1)+ (a∈R).
(1)若函數(shù)f(x)在區(qū)間(1,4)上單調遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線4x﹣3y﹣2=0相切,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)是定義在R上的函數(shù),對任意實數(shù)x,有f(1﹣x)=x2﹣3x+3.
(1)求函數(shù)的解析式;
(2)若函數(shù)在g(x)=f(x)﹣(1+2m)x+1(m∈R)在上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下是新兵訓練時,某炮兵連8周中炮彈對同一目標的命中情況的柱狀圖:
(1)計算該炮兵連這8周中總的命中頻率p0 , 并確定第幾周的命中頻率最高;
(2)以(1)中的p0作為該炮兵連炮兵甲對同一目標的命中率,若每次發(fā)射相互獨立,且炮兵甲發(fā)射3次,記命中的次數(shù)為X,求X的數(shù)學期望;
(3)以(1)中的p0作為該炮兵連炮兵對同一目標的命中率,試問至少要用多少枚這樣的炮彈同時對該目標發(fā)射一次,才能使目標被擊中的概率超過0.99?(取lg0.4=﹣0.398)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求||;
(2)已知點D是AB上一點,滿足=λ,點E是邊CB上一點,滿足=λ.
①當λ=時,求;
②是否存在非零實數(shù)λ,使得⊥?若存在,求出的λ值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com