計算:
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
=
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由于
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,利用“裂項求和”即可得出.
解答: 解:∵
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,
1
1×3
+
1
2×4
+
1
3×5
+…+
1
n(n+2)
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)
+(
1
3
-
1
5
)
+…+(
1
n-1
-
1
n+1
)
+(
1
n
-
1
n+2
)]

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
2n+3
2n2+6n+4

故答案為:
3
4
-
2n+3
2n2+6n+4
點評:本題考查了“裂項求和”,考查了推理能力與計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點O是△ABC內(nèi)一點,且
OA
OB
OC
,若△ABC與△OBC的面積之比為3:1,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinωxcosωx+cos2ωx-sin2ωx,其中ω>0,x∈R,若函數(shù)f(x)的最小正周期為π.
(1)求ω的值;
(2)在△ABC中,若f(B)=-2,BC=
3
,sinB=
3
sinA,求
BA
BC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的圖象如圖
(1)求f(x)的解析式;
(2)求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上有一點A,它關(guān)于原點的對稱點為B,點F為雙曲線的右焦點,且滿足AF⊥BF,設(shè)∠ABF=α,且α∈[
π
12
π
6
],則雙曲線離心率e的取值范圍為(  )
A、[
3
,2+
3
]
B、[
2
3
+1
]
C、[
2
,2+
3
]
D、[
3
3
+1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x2+2
4-x2
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是4×3的矩形(每個小方格都是單位正方形),在起點和中點都在小方格的頂點處的向量中,試問:
(1)與
AB
相等的向量共有幾個?
(2)與
AB
平行且模為
2
的向量共有幾個?
(3)與
AB
方向相同且模為3
2
的向量共有幾個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、12+πB、8+π
C、12-πD、6-π

查看答案和解析>>

同步練習(xí)冊答案