已知F1、F2是雙曲線16x2-9y2=144的焦點(diǎn),P為雙曲線上一點(diǎn),若|PF1||PF2|=32,則∠F1PF2=(  )
A.
π
6
B.
π
3
C.
π
2
D.
3
把雙曲線16x2-9y2=144化為標(biāo)準(zhǔn)方程,得
x2
9
-
y2
16
=1

∵a2=9,b2=16,∴c=5,
∴|F1F2|=2c=10,
設(shè)|PF1|>|PF2|,
則|PF1|-|PF2|=6,
|PF1|2+|PF2|2-2|PF1||PF2|=36,
∵|PF1||PF2|=32,
|PF1|2+|PF2|2=100,
∴cos∠F1PF2=
|PF1|2+|PF2|2-|F1F2|2
2|PF1||PF2|
=
100-100
2×32
=0,
∴∠F1PF2=
π
2

故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點(diǎn)為F,左,右頂點(diǎn)分別為A1,A2.過(guò)F且與雙曲線C的一條漸近線平行的直線l與另一條漸近線相交于P,若P恰好在以A1A2為直徑的圓上,則雙曲線C的離心率為( 。
A.
2
B.2C.
3
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

“mn<0”是方程“mx2+ny2=1表示雙曲線”的( 。
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線
x2
36
-
y2
49
=1的漸近線方程是( 。
A.
x
36
±
y
49
=0
B.
y
36
±
x
49
=0
C.
x
6
±
y
7
=0
D.
x
7
±
y
6
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)雙曲線
x2
a2
-
y2
b2
=1
的左焦點(diǎn)F作⊙O:x2+y2=a2的兩條切線,記切點(diǎn)為A,B,雙曲線左頂點(diǎn)為C,若∠ACB=120°,則雙曲線的漸近線方程為(  )
A.y=±
3
x
B.y=±
3
3
x
C.y=±
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1,F(xiàn)2是雙曲線
x2
a2
-
y2
b2
=1(a>b>0)的左、右焦點(diǎn),P為雙曲線左支上一點(diǎn),若
|PF2|2
|PF1|
的最小值為8a,則該雙曲線的離心率的取值范圍是( 。
A.(1,3)B.(1,2)C.(1,3]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若雙曲線C
x2
m
+y2=1
的離心率為2,則實(shí)數(shù)m的值為( 。
A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)點(diǎn),P是橢圓上任意一點(diǎn),則當(dāng)直線PM,PN的斜率都存在時(shí),其乘積恒為定值.類(lèi)比橢圓,寫(xiě)出雙曲線C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
的類(lèi)似性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線
x2
4
-
y2
8
=1
的實(shí)軸長(zhǎng)是( 。
A.2B.2
2
C.4D.4
2

查看答案和解析>>

同步練習(xí)冊(cè)答案