求值:lg4+lg25+4 
1
2
-(4-π)0
考點:對數(shù)的運(yùn)算性質(zhì)
專題:計算題
分析:根據(jù)對數(shù)的運(yùn)算性質(zhì)以及分?jǐn)?shù)指數(shù)冪的運(yùn)算法則,零次冪的定義進(jìn)行計算即可.
解答: 解:原式=lg(4×25)+
4
-1
=lg100+2-1
=2+2-1
=3.
點評:本題考查了對數(shù)的運(yùn)算性質(zhì),分?jǐn)?shù)指數(shù)冪的運(yùn)算法則以及零次冪的概念應(yīng)用問題,解題時應(yīng)細(xì)心計算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)=f(x-10),當(dāng)0≤x≤10時,f(x)=x3-2x,則函數(shù)f(x)在區(qū)間[0,2014]上的零點個數(shù)為(  )
A、403B、402
C、401D、201

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2-a)(x-1)-2lnx.(a為常數(shù))
(1)當(dāng)a=0時,①求f(x)的單調(diào)增區(qū)間;②試比較f(m)與f(
1
m
)的大;
(2)g(x)=ex-x+1,若對任意給定的x0∈(0,1],在(0,e]上總存在兩個不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)若h(x)的單調(diào)減區(qū)間是(
1
2
,1),求實數(shù)a的值;
(2)若f(x)≥g(x)對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(3)設(shè)h(x)有兩個極值點x1,x2,且x1∈(0,
1
2
).若h(x1)-h(x2)>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項a1=1,公比為q的等比數(shù)列,
(Ⅰ)證明:kCnk=nCn-1k-1(k,n∈N*,k≤n)
(Ⅱ)計算:a1Cn1+(a1+a2)Cn2+(a1+a2+a3)Cn3+…+(a1+a2+…+an)Cnn(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=3,a4=7.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過去的2013年,我國多地區(qū)遭遇了霧霾天氣,引起口罩熱銷.某品牌口罩原來每只成本為6元.售價為8元,月銷售5萬只.
(1)據(jù)市場調(diào)查,若售價每提高0.5元,月銷售量將相應(yīng)減少0.2萬只,要使月總利潤不低于原來的月總利潤(月總利潤=月銷售總收入-月總成本),該口罩每只售價最多為多少元?
(2)為提高月總利潤,廠家決定下月進(jìn)行營銷策略改革,計劃每只售價x(x≥9)元,并投入
26
5
(x-9)萬元作為營銷策略改革費(fèi)用.據(jù)市場調(diào)查,每只售價每提高0.5元,月銷售量將相應(yīng)減少
0.2
(x-8)2
萬只.則當(dāng)每只售價x為多少時,下月的月總利潤最大?并求出下月最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求直線y=x+1被雙曲線x2-
y2
4
=1截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)對任意x,y∈R均有f(x)+f(y)=f(x+y),且當(dāng)x>0時,f(x)<0,f(1)=-
2
3

(1)判斷并證明f(x)在R上的單調(diào)性;
(2)求f(x)在[-3,3]上的最值.

查看答案和解析>>

同步練習(xí)冊答案