五個學(xué)生的數(shù)學(xué)與物理成績?nèi)缦卤恚?br />
學(xué)生ABCDE
數(shù)學(xué)8075706560
物理7066686462
(1)作出散點(diǎn)圖和相關(guān)直線圖;
(2)求出回歸方程.
考點(diǎn):線性回歸方程
專題:綜合題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)所給數(shù)據(jù)可得散點(diǎn)圖和相關(guān)直線圖;
(2)分別做出橫標(biāo)和縱標(biāo)的平均數(shù),利用最小二乘法做出b的值,再做出a的值,寫出線性回歸方程,得到結(jié)果
解答: 解:(1)散點(diǎn)圖和相關(guān)直線圖,如圖所示:
(2)由已知數(shù)據(jù)得,
.
x
=70,
.
y
=66,
∴b=
80×70+75×66+70×68+65×64+60×62-5×70×66
802+752+702+652+602-5×702
=0.36,
∴a=40.8,
故回歸直線方程為y=0.36x+40.8
點(diǎn)評:本題考查變量間的相關(guān)關(guān)系,考查回歸分析的應(yīng)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lnx
x

(Ⅰ)求過原點(diǎn)且與函數(shù)f(x)的圖象相切的直線方程;
(Ⅱ)設(shè)g(x)=f(x)lnx-m,討論函數(shù)g(x)在區(qū)間[
1
e
,e2]上零點(diǎn)的個數(shù);
(Ⅲ)記Fn(x)=
ln2(nx)
n3
,Sn(x)=F1(x)+F2(x)+…+Fn(x),n∈N*.若對任意正整數(shù)P,|Sn+p(x)-Sn(x)|<
4
n
對任意x∈D恒成立,則稱Sn(x)在x∈D上是“高效”的.試判斷Sn(x)是否是x∈[e,e2]上是“高效”的?若是,請給出證明,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:
m?α
l∥m
(      )
⇒l∥α,在“(  )”處補(bǔ)上一個條件使其構(gòu)成真命題(其中a、b為直線,α為平面),這個條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n=1,2,3,….
(Ⅰ)證明:數(shù)列{
1
an
-1}是等比數(shù)列;
(Ⅱ)求數(shù)列 {
n
an
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

討論函數(shù)f(x)=lg(1+x)+lg(1-x)的奇偶性與單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,記Sn是它的前n項(xiàng)和,若S2=16,S4=24,求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2-(a+2)x+alnx
①當(dāng)a=1時,求函數(shù)f(x)的極小值;
②當(dāng)a=-1時,過坐標(biāo)原點(diǎn)O作曲線y=f(x)的切線,設(shè)切點(diǎn)為P(m,n),求實(shí)數(shù)m的值;
③若x≥1時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)在空間中
(I)已知三點(diǎn)A(1,1,1)、B(2,2,2)、C(3,2,4),求△ABC的面積;
(Ⅱ)已知向量
a
=(2,-1,3),
b
=(-1,4,-2),
c
=(7,5,λ),若向量
a
b
c
共面,求實(shí)數(shù)λ之值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=2,則y=
1
a
+
4
b
的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案