已知函數(shù)。
(1)證明:對(duì)定義域內(nèi)的所有x,都有;
(2)當(dāng)的定義域?yàn)閇a+,a+1]時(shí),求的值域;
(3)設(shè)函數(shù),若,求的最小值。
(1)證明:
               ,
∴結(jié)論成立。
(2)解:,
當(dāng)時(shí),
,
,
的值域?yàn)?IMG style="VERTICAL-ALIGN: middle" src="http://thumb.1010pic.com/pic1/upload/papers/g02/20110127/20110127092542222926.gif">。
(3)解:
當(dāng)時(shí),
當(dāng)時(shí),;
因?yàn)?IMG style="VERTICAL-ALIGN: middle" src="http://thumb.1010pic.com/pic1/upload/papers/g02/20110127/201101270926378471000.gif">,所以,
則函數(shù)上單調(diào)遞增,在上單調(diào)遞減,
因此,當(dāng)時(shí),有最小值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)其中

(1)證明函數(shù)f(x)的圖像在y軸的一側(cè);

(2)求函數(shù)的圖像的公共點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省溫州市甌海中學(xué)高一(上)12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)
(1)證明f(x)為奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義加以證明;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省高三期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)證明:對(duì)定義域內(nèi)的所有x,都有

(2)當(dāng)fx)的定義域?yàn)閇a+, a+1]時(shí),求fx)的值域。.

(3)設(shè)函數(shù)g(x) = x2+| (xafx) | , 若,求g(x)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省高一期中考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)已知函數(shù)

(1)證明f(x)為奇函數(shù);

(2)判斷f(x)的單調(diào)性,并用定義加以證明;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河南省鄭州外國(guó)語(yǔ)學(xué)校高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本題8分)已知函數(shù)

(1)證明上是減函數(shù);

(2)當(dāng)時(shí),求的最小值和最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案