【題目】已知(a>0,且a≠1).
(1)討論f(x)的奇偶性;
(2)求a的取值范圍,使f(x)>0在定義域上恒成立.
【答案】(1)見解析;(2)
【解析】
(1)依題意,可得函數(shù)f(x)的定義域為{x|x≠0},利用函數(shù)奇偶性的定義可判斷出f(﹣x)=f(x),從而可知f(x)的奇偶性;
(2)由(1)知f(x)為偶函數(shù),故只需討論x>0時的情況,依題意,當x>0時,由f(x)>0恒成立,即可求得a的取值范圍.
(1)由于ax-1≠0,則ax≠1,得x≠0,
所以函數(shù)f(x)的定義域為{x|x≠0}.
對于定義域內(nèi)任意x,有
f(-x)= (-x)3
= (-x)3
= (-x)3
=x3=f(x).
∴f(x)是偶函數(shù).
(2)由(1)知f(x)為偶函數(shù),
∴只需討論x>0時的情況,當x>0時,要使f(x)>0,即x3>0,
即+>0,即>0,則ax>1.
又∵x>0,∴a>1.
因此a>1時,f(x)>0.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當h(a)的定義域為[m,n]時,其值域為[m2,n2],若存在,求出m、n的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=﹣3x2+a(6﹣a)x+6.
(Ⅰ)解關于a的不等式f(1)>0;
(Ⅱ)若不等式f(x)>b的解集為(﹣1,3),求實數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=lg(-x-1)的定義域與函數(shù)g(x)=lg(x-3)的定義域的并集為集合A,函數(shù)t(x)=-a(x≤2)的值域為集合B.
(1)求集合A與B.
(2)若集合A,B滿足A∩B=B,求實數(shù)a取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)為增函數(shù),當x,y∈R時,恒有f(x+y)=f(x)+f(y)
(1)求證:f(x)是奇函數(shù).
(2)是否存在m,使,對于任意x∈[1,2]恒成立?若存在,求出實數(shù)m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了月日至月日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
設農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再對被選取的組數(shù)據(jù)進行檢驗.
(1)求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;
(2)若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日與月日的數(shù)據(jù),求關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率為。
(1)記甲擊中目標的次數(shù)為,求的概率分布及數(shù)學期望;
(2)求乙至多擊目標2次的概率;
(3)求甲恰好比乙多擊中目標2次的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設向量 =(cosθ,sinθ), =(﹣ , );
(1)若 ∥ ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)寫出函數(shù)的解析式;
(2)若直線與曲線有三個不同的交點,求的取值范圍;
(3)若直線 與曲線在內(nèi)有交點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com