設(shè)直線x+y-1=0與圓(x-1)2+(y-2)2=R2(R>0)相交于A、B兩點(diǎn),且弦AB的長為2
2
,則半徑R的值是
 
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:先求出圓心(1,2)到直線x+y-1=0的距離,再利用弦AB的長為2
2
,結(jié)合勾股定理,可求半徑R的值.
解答: 解:圓(x-1)2+(y-2)2=R2的圓心坐標(biāo)為(1,2),半徑為R,
則(1,2)到直線x+y-1=0的距離為
|1+2-1|
2
=
2

∵弦AB的長為2
2
,
∴R=
(
2
)2+(
2
)2
=2.
故答案為:2.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查點(diǎn)到直線距離公式的運(yùn)用,正確運(yùn)用垂徑定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-
3
),(0,
3
)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與C交于A,B兩點(diǎn).k為何值時(shí)以AB為直徑的圓經(jīng)過原點(diǎn)O?此時(shí)|AB|的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2
3
sinxcosx-1,
(1)求f(x)的最小正周期及對(duì)稱軸方程;
(2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若f(
c
2
)=2且c2=ab,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系o-xyz中.點(diǎn)(1,2,3)關(guān)于y軸對(duì)稱的點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2-10n,數(shù)列{bn}的每一項(xiàng)都有bn=|an|,數(shù)列{bn}的前n項(xiàng)和Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}共有12項(xiàng),其中a1=0,a5=2,a12=5,且|ak+1-ak|=1,k=1,2,3…,11,則滿足這種條件的不同數(shù)列的個(gè)數(shù)為(  )
A、84B、168
C、76D、152

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某一隨機(jī)變量x的概率分布如下,且E(x)=5.9,則a的值為( 。
x 4 a 9
p 0.5 0.2 b
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n∈(0,1),函數(shù)f(x)=x2+x+n有零點(diǎn)的概率為( 。
A、
7
8
B、
1
4
C、
1
2
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過10小時(shí).若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤5元,生產(chǎn)一個(gè)騎兵可獲利潤6元,生產(chǎn)一個(gè)傘兵可獲利潤3元.
(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)x與騎兵個(gè)數(shù)y表示每天的利潤W(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案